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Preface

When I volunteered to teach the MIT/WHOI Joint Program core course on
“Wave Motions in the Ocean and Atmosphere” in Spring 1989, I naturally turned for
guidance to the notes I had acquired from a similar course taken while a student at
Scripps Institution of Oceanography. In an attempt to broaden the scope of the course,
I borrowed a set of notes from Paola Malanotte-Rizzoli who taught the MIT/WHOI
core course from 1983-1985. It didn’t take long to recognize that Paola’s notes were
nearly identical to mine because she had also based hers on the waves course she had
taken at Scripps. In both cases, the Scripps course was taught by our former advisor
Myrl Hendershott, which means that at least two generations of Physical
Oceanography students have learned the “Hendershott view” of waves. Considering
the seemingly timeless nature of the concepts presented in Myrl’s course as well as the
profound influence Myrl has had on Paola and myself through both his teaching and
his advising, we decided to compile these notes into a form which could be distributed
to students and, at the same time, serve as a tribute to Myrl. Thus, with the exception
of some minor modifications, additions and deletions that Paola and I have made, the
notes contained herein are those developed by Myrl for his course. We hope that these
notes will be as clear and as useful to future readers as they have been to us.

Woods Hole David C. Chapman
1989







These notes have been collected and assembled in different ways over the years
by two people successively, Paola Malanotte-Rizzoli and Dave Chapman. The present
and chronologically latest version has been put together by Dave and constitutes the
bulk of the waves course he taught in Spring 1989. When I taught the course during
the years 1983-85, the chapter on acoustic waves was absent. I had instead a section on
the Garrett and Munk spectrum and a chapter on nonlinear wave interactions. These
differences reflect the different years in which Dave and I took the waves course at
Scripps Institution of Oceanography from our former advisor Professor Myrl C.
Hendershott and the modifications that Myrl had made in his course in successive
years. Thus the inspirational source or, rather, the actual bulk of these notes is the
waves course taught by Myrl at Scripps.

Myrl Hendershott has been at W.H.O.1. this summer as Principal Lecturer of
the GFD Summer School on Ocean Circulation. This opportunity, plus Dave
Chapman’s diligence and patience in typing the notes on his word processor together
with formulas and equations (the latter were handwritten in my own set of notes), has
motivated us to produce this report as an homage to Myrl. Without him, we would
both have had a much harder and more time-consuming role in putting together a
decent course on waves. More importantly, Myrl is in many ways responsible for
whatever success we have had in the field of Oceanography.

I must add here a personal note. Hearing Myrl again as a teacher this summer
after so many years, I have realized how much he has influenced my way of thinking
and teaching. On the not-so-positive side (I will not say negative):

e like him, I “scribble” a lot on the blackboard.
o like him, I erase with my left hand what I have just written with my right hand.

o like him, I put ¢ (z wavenumber) before k (y wavenumber)

As the letters j, k, z,y,w do not exist in the Italian alphabet, k coming before or after
¢ was supremely unimportant to me. On the positive side, Myrl was absolutely the
best teacher I had in the various courses I took at Scripps. His lectures were always
interesting, imaginative and full of physical insight. Looking back, I realize that a
great deal of the important oceanographic concepts and ideas I learned over the years
go back to my long association with Myrl as teacher, advisor, colleague and, last but
not least, dear friend. I hope I absorbed from him some of the positive qualities too.

Woods Hole Paola Malanotte-Rizzoli
1989







Contents

1 Basic concepts

1.1

1.2

1.3

1.4

1.5

Plane waves . . . . . . . .. ...
The dispersion relation . . . . . ... ... ... ..
Linear superposition of plane waves . . . . . . . .. ... ... ... ...
The method of stationary phase: Group velocity . . . . . ... ... ...

Wayves in slowly varying media: Ray theory . . . . . ... ... ... ...

2 Acoustic waves

2.1

2.2

2.3

24

2.5

2.6

Basic physics . . . . ... L
Plane waves . . . .. . ... . ...
Reflection at a solid boundary . . . . .. ... ... ... . ... .. ...
Plane waves in a channel . . . . . .. ... ... .. ... ... ... ..
Scattering at a discontinuity . . . .. .. ... ... ... ... .. ...

Generation of plane waves . . . . . ... .. ... ... ... ... ...

o

11

18




2.6.1 An initial value problem . . . . . .. .. ... 0L

26.2 Forcingfromrest . . . .. .. ...
2.7 Slowly varying medium . . . . ... ... ... ... ...

Surface gravity waves

3.1 Homogeneous medium . . . . ... ... ... ... ...
3.2 Linearsolutions . . . . . .. .. ..
3.3 Internal waves . . . . . . ...
3.4 Qualitative retreatment of surface waves . . .. .. ... ... .. ....
3.5 Careful retreatment of surface waves . . . . .. .. ... ... ... ...
3.6 An initial value problem . . . . ... 0L L
3.7 Shipwaves . . . . . ...
3.8 A wave energy equation . . . .. ... ...
3.9 Slowly varying medium . . . . . . . ... ... ...
3.10 Waves riding on a current . . . . . ... ...

Internal gravity waves

4.1 The internal wave equation. . . . . ... .. ... ... ...
4.2 Unbounded, rotating, stratified fluid . . .. .. ... ... ... .....
4.3 Waveguidemodes . . . . . . .. ... e

43.1 Evanescentmodes. . . ... ... .. ... .. .. .. ... ...,

i

38

38

41

43

45

47

50

54

57

58

61

64




4.4  Generation at a horizontal boundary . . .. .. .. .. ... .. . .. ..
4.5 Reflection from a solid boundary . . . . ... ... .. ... ... .. ..

4.6 Variable buoyancy frequency . . . . ... ... ...,

5 Shallow water dynamics
5.1 Laplace’s tidal equations . . . . . .. .. ... ... ... ... ... ...
5.2 Shallow water equations with rotation . . . ... ... ... .. . . .. .
5.3 Reflection at asolid wall . . . . .. ... ... ... . ... . ... . ...
5.4 Seichesinabox . . ... ... ...
5.5 Propagationoverastep . . .. .. ... ...
5.6 Edge waves and coastal seiches . . . ... ... ... ..
5.7 Sverdrup and Poincaré waves . . . . . ... .. ... ... .. ... ...
5.8 Kelvinwaves ... ... .. ... .... e
5.9 Waveguide modes . . . . .. .. ...
5.10 Kelvin wave reflection . . . .. ... . ... .. ... ... .. ... ...
5.11 Rossby and planetary waves . . . . . .. ... ... ... ... .. ....
5.12 Rossby wave reflection . . . .. ... ... ... ... ... ...
5.13 Western boundary current formation . ... .. .. ... ... ... ...

5.14 Equatorial waves . . .. .. .. ... ..

6 Topographic effects

i

107

108

110

114

118

121

122

125

127

136

139

140

149




6.1 Topographic Rossby waves . . . . .. .. ... ... .. ... .. ..... 149

6.2 DBottom-trapped waves . . . . . .. .. ... L 153
6.3 Continental shelf waves . . . . . . . ... .. ... .. ... ... .. ... 156
6.4 Coastal-trapped waves . . . . . .. ... ... ... . 162
6.5 Wind-forced, longwaves . . . ... ... ... ... ... .. ... 167
7 References 172

v




Chapter 1

Basic concepts

Waves are not easy to define. Whitham (1974) defines a wave as “a recognizable signal
that is transferred from one part of a medium to another with recognizable velocity of
propagation”. This is a very broad definition and encompasses an enormous range of
dynamical systems as well as physical processes. That is, waves can occur in many
different media and take on many different forms. We often think of waves as simple
sinusoidal undulations of some substance, but this view is too restricted and often not

very useful.

In this course, we will consider a number of different types of waves and wave
motions in the ocean and in the atmosphere. They will be found to occur at many
different time and space scales. In general, wave-like fluctuations of flow fields are not
exact solutions of the continuum formulation of momentum and mass conservation and
the laws of thermodynamics. However, they often represent good approzimate

solutions of those equations.




Therefore, the first step in discussing wave motion is the appropriate
simplification of the field equations to obtain a set whose solutions are waves. In most
of what we do, this involves linearizing the field equations about some basic state of
rest or of quasi-steady motion. That is, products of any dependent variables in the
equations are typically assumed to be small in relation to the other terms. It usually

proves possible, by this device, to obtain waves as solutions of the linearized equations.

Because the equations are linear, we are entitled to superpose solutions of the
equations in order to find solutions to more general initial and boundary value
problems. This is one of the real beauties of linear wave theory. We will spend most of
our time studying such linear waves and their properties before relaxing the

linearization condition which precludes nonlinear interactions.

As we will see, there are many different waves with quite different
characteristics which can exist within the framework of rotating fluid systems such as
the ocean and the atmosphere. In order to proceed, certain concepts and approaches
which are common to most studies of linear waves should be understood first. Some of

these are presented next.

1.1 Plane waves

The basic state of rest or quasi-steady flow about which the waves are linear
perturbations defines the medium through which the waves propagate. If we assume
that the medium is homogeneous in space and time (even if it strictly is not), then

possible solutions often have the form of a plane wave:

(]5(57 t) =R Aei(i;'f_at)




where ¢(%,1) are the dependent variables (i.e., velocity @, pressure p, density p, etc.),
A is the amplitude, k= (k,€,m) is the wavenumber, o is the radian frequency, and R
means that we take the real part of the expression. Customary auxiliary definitions are

A= 27r/]/;] = wavelength, f = ¢/2r = frequency, T = 27 /o = 1/ f = period.

Since A is complex, it carries with it not only amplitude but also phase

information. We could, of course, write

&
o

$(Z,1) = |A| cos(k - F — ot + tan™"

)

=

where < refers to the imaginary part of the expression. However, it is often much more
convenient to work with the complex form of all variables and to take the real parts
only at the very end. This is always possible because we have linearized the field

equations.

The convention e(F#-7t) i(k-Z+ot

is preferable to the convention e ) because, in the

first case, wave ‘crests and troughs’ move in the direction of &£ when o > 0. This can be
seen by examining the phase of the wave, namely k- % — ot. Surfaces of constant phase,

k-2 — ot = @y, are planes normal to k and moving outward along k as ¢ increases (for

o > 0). In two dimensions we have
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The speed at which phase planes move along k is the phase speed
c=oflk| =T

It is directed along k. Note that the speed of phase plane intersection with the z-axis

1s not ccos @ but rather is
c o k
—_ - ) =0 k
() = !

which can be considerably faster than c. In fact, as § — /2, the phase speed in the

cos §

z-direction approaches infinity!

The form Aei®#-71 is called a ‘travelling plane wave’. The superposition of

oppositely travelling plane waves
AeiFE=ot) + Aei(-FE=0t) _ 9 goict cos(E- T)

is called a standing wave because the crests and troughs do not propagate with time.

It is not always possible to construct such a superposition because oppositely travelling

plane waves are not always possible and, even when possible, may have different

wavenumbers.




1.2 The dispersion relation

All of the foregoing is kinematics, true for any given a,lg with no physics. The physics

are contained in the dispersion relation
o = Q(k)

which is obtained by requiring the plane waves to be solutions of the linearized,
dissipationless equations of motion. The following table contains some examples of
wave equations (all of which we will encounter later) with their respective dispersion

relations.

Linearized Equation Plane wave Dispersion Relation

a) ¢+ coppy =0 gtkz=iot o = cok

b) %tt e Ut o? = c2k?

c) ¢+ V=0 giFE=iot o=23 -k
d) gu—AVip=0 ko o = c3k|?

e) Vi +fg, =0 FFiot oo gLk

Fach linearized equation is a statement of approximate dynamical and
thermodynamical conservation laws. All are solved using plane waves of the type
discussed above. All require different dispersion relations, and the solutions have
different properties. For example, for cases (a)-(d), the phase speed ¢ = a/IE[ s
independent of wavelength, frequency or direction. Such waves are nondispersive or
dispersionless because all waves (for each case individually) travel with the same speed.
In case (e), the phase speed c is dependent upon the wavelength and the direction, so

these waves are dispersive. As we will see, this basically means that a group of such

5




waves will not remain together while propagating through the medium, but instead
will break up or disperse. Standing waves, as defined above, are possible in cases (b)
and (d) because oppositely travelling waves can occur with the same wavenumber but
with frequencies of opposite sign. That is, the dispersion relation has more than one
branch, ¢ = QJ(E) for j =1,..n. However, in cases (a), (c) and (e), a given
wavenumber corresponds to only a single frequency (only one branch), i.e. waves can

travel only in one direction, so standing waves are not possible.

Several cautionary notes are in order here. Plane waves are rarely the complete
solution to any boundary or initial value problem. If the medium is actually
homogeneous and steady, then plane waves may often be superposed to solve such
problems. However, often the medium is not homogeneous or steady, so plane wave
solutions then require modifications before they can be used. We shall spend a good
part of this course deriving linearized equations which isolate particular physics and we
shall discuss the appropriate plane wave solutions in detail. But it must be kept in
mind that, in order to establish a basis for comparison with observations of real
systems, a boundary or initial value problem must be solved, most probably including
medium inhomogeneities. We shall, in some instances, show examples of such problems

for some sets of linearized equations.

1.3 Linear superposition of plane waves

In a homogeneous medium, initial value problems are solvable as Fourier integrals
which amounts to summing an infinite number of plane wave solutions. If the

dispersion relation has n branches




then n initial conditions are normally required. The solution takes the form

n

@0 =3 [ [ [ AjetFaa®i g

i=1

where the A]»(l;) are fixed by the initial conditions. For example, if n = 1, and we are

in one dimension

= Q(k)
(2,1) / " Ak)ele=20 g
A(k) is fixed by specifying ¢(x,0), that is
(z,0) /°° R Ak A(k) = L/oo (z,0)e™* dg
o7 )

Notice that if Q = ck, then
Bla,t) = [ A(R)e ) g = |7 AR k= o(z — ct,0)

This means that, in this special case, the initial condition #(z,0) translates towards

z > 0 at speed ¢ without changing shape.

For homogeneous media, therefore, the problem is generally solved by (i) finding
the dispersion relation, (ii) deducing the Aj(E) from initial conditions, and (iii)

evaluating a set of Fourier integrals.

1.4 The method of stationary phase: Group

velocity

The greatest difficulty with the above procedure is most often that the integrals are

hard to do. A very useful approximate technique with physical content is the method




of stationary phase. As a preview, let us consider a one-dimensional example with the

special initial condition é(z,0) = a(x)e**o®

\

—x
* Ax>> kg
277'/kO
/
—
Ax

This represents a slowly modulated plane wave with envelope a(z). We can always

write

¢(z,0) = /°° A(k)e*= dk 5 A(k) = 51.7;/_0:0 é(z,0)e” " dz

— OO

and so

1 e . oo ‘
A(k) = ?‘2;/__00 a(m)ez(ko—k)z dz | a(:l:) — /~OO A(k)ez(k—ko)x dk

In the integral for A(k), the contribution to the integral itself is mostly from the
regions where the quantity (ko — &)z is small. In fact, where this quantity is large,
e!kFo=k)z oscillates rapidly and the integrated parts cancel each other. Moreover,

a(z) = 0 for z > Az. So, A(k) is centered around ky and peaked there for this special
choice of ¢(z,0).

l

Ko

The modulated plane wave is said to be a ‘narrow band signal’.



We can evaluate ¢(z,t) by expanding Q(k) in a Taylor series about kq:

ba,t) = [ A(k)el=-atd g

~ /oo A(k)ei[kx—ﬂ(ko)t—(k—ko)%%|k=k0t] dlk

— 00

_ /oo A(k)ei[kx—ﬂ(ko)t—-(k—ko)%%]k___kot]eikoz——ikoa: dk

¢ilhor= (ko) /°° A(R)eiE=ko)e= B lkmro] g,

That is
o0

t) = i[koz‘—ﬂ(ko)t] — it
¢($7 ) € G,(ZE 0klk—k0 )

The modulating envelope moves at a velocity 9Q/dk|j=s,, defined by the dispersion

relation o = Q(k). This velocity is called the group velocity

o0

c, =

g %lk=ko

and is not, in general, equal to the phase speed ¢ = o /k of the modulated plane wave.
Therefore, the dominant wavelength A = 27 /ky has two speeds associated with it.
They are the phase speed ¢ = o/ko = Q(ko)/ko and the group velocity

¢g = 00 [Ok|r=k, = 0Q/0kl|;=k,. The modulated envelope thus moves through the

phases of the underlying plane wave rather than with them.

The restriction to narrow band processes is illustrative but not necessary.

Consider
#at) = [ 7 A(k)ete=00 g
Define
O(k; z,t) = ka [t — Q(k)
Then

Bat) = [ Akl g




The Riemann-Lebesgue theorem (e.g. Bender and Orszag, 1978, pp. 277-278) says that
if [23, A(k) dk exists, then lim;_.o, [, A(k)e** dk = 0. Hence, we get little
contribution to ¢(z,t) unless O(k; z,t) has no variation with k, i.e., unless there exist

ko such that (00/0k)|, = 0. Perhaps a more intuitive statement is that the integrand
looks like

Akl (ki X, hAWAWA AWAWL
S AVAVAVAVAVAFARVAVAVAVAVAVEL

in which the rapid oscillations of €'®*, as ¢t — 00, cancel unless 90/9k = 0 somewhere.

Stationary phase now asserts
(z,1) ~ /°° A(k) €O Uo)+(b=ko)0" (ko) +(k=k0)20" (ko) /2] g

In other words, at a given 2 and ¢, the greatest contribution to ¢(z,t) is from that
wavenumber ko at which ©'(ko;z,t) = 0. Since O(k; z,t) = kz/t — Q(k) we have

o0
e/t = =l =0
which means that the wavenumber ko that makes the biggest contribution to ¢(z,¢) is

the one for which
ad
ok

i.e., the one whose group velocity is z/t.

kozm/t )

To estimate that contribution, realise that ©'(ky) = 0, so that

¢($,t) &~ A(ko)eite(ko) /°° ei(k_k0)2@“(ko)t/2 dk

—0C0
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or, since [%° e~ dz = (7/a)Y/?, then
d(z,1) 22 Ako)e™® )21/ — 310" (ko; x, t)]'/?
d(z,t) 2 A(ko)eilbor=k)lior 0" (ko; z,1)]1/?

The solution is thus a slowly modulated plane wave whose wavenumber kq is

characterized by 09/0k

ko = ”C/t

The solution is only valid for very large ¢t and z because it requires the rapid

oscillation of elFe=2R)1 4t 411 except those where = — %—%t = 0. It thus describes the

waves far from and long after their initial generation.

1.5 Waves in slowly varying media: Ray theory

The procedure of Fourier synthesis followed by stationary phase interpretation is
natural in homogeneous media. It introduces the concept of group velocity, but the
idea and significance of group velocity extend into problems for which Fourier synthesis
is clumsy at best. An important set of such problems includes those for which the
medium varies over a scale L,, which is much greater than the length scale of the
waves, L. In these cases, an approximate technique called the WKB method can
exploit the smallness of L,,/L,,. The WKB method, however, is often tedious and
difficult to interpret. Instead, a general ‘recipe’ called ray theory, which corresponds to

the first and second orders of approximation of the WKB method, can be used.

Let us consider a locally periodic solution of the form
¢ = a(z, t)ei@(z’t)

in which the amplitude a and the phase © are slowly varying functions of z and t; i.e.,

they vary with the large space and time scales of the medium or of the wave groups

11




and not the small scale of the sinusoidal plane wave. We can define the local

wavenumber & and the local frequency N by

where V is the gradient operator and |4, |, indicate that the partial derivatives are
carried out keeping the other coordinate constant. Thus, Aa/a < 1 and AO/O « 1

over k~! and N1,

For these definitions, we see first that
Vxk=0

which states that the local wavenumber is irrotational. Now suppose we go from place

A to place B over the path I'.

A

The number of wave crests we pass through is

L
Tl—%‘/‘; +ads

But since § k-ds= [E-Vxkdr=0 (by Stokes’ theorem where £ is the unit vector
normal to the surface and dr is an element of the area inside the path), then the
number of wave crests inside the region is conserved. That is, the crests have no ends,

so the number of crests within a wave group will be the same for all time. This need

not be true for all waves, but it is true for slowly varying plane waves as defined above.

12




From the definition of k and N, it follows that
ok
— |z Nl = .
e+ VN =0 (1)

Now with the above definition of n, we have

on 1 B Ok 1 (B 1
on _ 1 _.r:-_/ o df = (N _
ot 2w Ja Ot @ 27 Ja VN ds 27T(NA Ns)

This says that the rate of change of the number of wave crests between A and B is
equal to the rate of crest inflow at A minus the rate of crest outflow at B. Thus (1.1)
expresses the conservation of wave crests between A and B, i.e., crests are neither

created nor destroyed.

So far, we have defined the local wavenumber and frequency only as derivatives
of ©. There has been no direct statement of dynamics. We introduce dynamics by
asserting that the wavenumber and frequency must be related in just the same way

that they are for a plane wave!

N = Q(k; £, 1)

where, if we solved for plane waves eiFE=ot) while keeping all variable medium
parameters momentarily constant, we would obtain ¢ = Q(l:, Z,t) as our dispersion
relation. This turns out to be equivalent to the lowest order of a WKB calculation,

despite being stated here as an arbitrary recipe.

Now this assertion and the definitions of k and N allow us to introduce the

group velocity in another way.

ON N o0, Ok o0 ON

—

k=S lat %'5’t~87|” = o7 lka Cg"—‘c)?,-lt
in which the group velocity has been defined as

_ON _ 00
= Ok Ok
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and the repeated index implies summation. In vector form, we have

ON o0

Sr VN =2 (1.2)
In a similar manner starting with (1.1)
i Qg’l;t ML
ot dz; ™ Ok; " Dz
Since V x £ = 0, then Ok;/0x; = Ok;/0z;, so we have
%Jrag-w,-:—g—zlat (1.3)

We thus have very simple expressions, (1.2) and (1.3), for the evolution of local
wavenumber £ and local frequency IV as we move along a ray (i.e., we move at the
local group velocity ¢;) in terms of the plane wave dispersion relation. Such variations
occur when Q(l:, Z,t) has parametric z,¢ dependence such as if waves move in water of

variable depth.

The implications of these equations deserve some discussion. Suppose first that

the medium is homogeneous, i.e. N = Q(lt) # Q(E, Z,t). One possible solution is the

{(kZ-Nt) when k and N are constants. The initial condition is

H(&) = aeFZ. Since Ok dz; = 0; 09/ dz; = 0 then from (1.3), 9k/0t = 0 everywhere,

plane wave ¢ = ae

that is k never changes at future times. Similarly, N = Q(E) gives N at t = 0. Since
ON/0z; =0, 0Q/0t = 0, then by (1.2) AN/t = 0 everywhere, that is N never changes
at future times. The plane wave in a homogeneous medium is thus entirely consistent

with the ray theory formulation.

Suppose now that the medium remains homogeneous, but the initial conditions
are more complicated. Both a and k have slow z dependence at ¢ = 0 as illustrated

below:

14
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Notice that a and k should vary slowly over A, even though the sketch is not very

slowly varying.

The initial frequency is obtained from N(z,0) = Q[E(f, 0)]. To find

N(Z,1), E(:f:',t) we solve the initial value problem

Ok Ok _
ot T 9oz,
N . ON _,
at gja.’l,']'_

because the assumed homogeneity of the medium implies 992/t = 0 and 990 /dz; = 0.
This initial value problem may have to be solved numerically, but the equations have a
simple physical interpretation. They say that, if we move at the group velocity

¢y = V£ appropriate to the wavenumber k and the frequency N = Q(E), then we
shall see no change in N and k at future times. In other words, N and & are constant

following a group in a homogeneous medium. The situation can be sketched as follows

15
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Clearly, if we sit at a fixed Z, different groups pass at different times. So at fixed 7

ON/Ot + 0, OE/dt # 0, in general, even though the medium is homogeneous. The
whole idea fails if the rays, given by

t —
T =0+ / & [k(&,1)] dt
0]

cross each other. In that case, the solution is no longer of slowly varying form

From this point of view, the medium inhomogeneities are only technical
complications. In the general inhomogeneous case, we must solve (1.2) and (1.3), so k
and N vary even though we move with a group. If we define a ‘total’ derivative as

d 9

E't'_—_“é;jl-cg'v

which is the derivative following the wave group (or wave packet), then (1.2) and (1.3)

can be rewritten as

dki 09
dt T om
dN 90
at T ot
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while the position of the wave group is given by

ad | =,
= = &lk(E, 1)

Then we have a set of three ordinary differential equations for Z (position of the wave
packet), k and N. These may be integrated in time from a number of different starting
positions Ty in order to get E, N at future times, a procedure which is computationally

efficient and effective. The path dZ/dt = ¢, defines the ray.

The lowest order of the corresponding WKB calculation justifies the foregoing
assertions. The next order of the WKB calculation fixes the amplitude. In many cases,

the more complex WKB calculation amounts to solving

%é +V-(GA) =0

where A = ¢/N and ¢ is the wave energy. A is called the action of the wave. Usually
¢ o a® so this equation really describes a, but a great deal of further discussion is
necessary to establish its validity. Here we have simply set forward ‘recipes’ which give

-
o

a, N, k
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Chapter 2

Acoustic waves

Being now equipped with some ideas about wave motions, it is useful to consider an
example of waves which occurs in both the ocean and the atmosphere and which can
illustrate many of the ideas in a rather simple way. Acoustic or sound waves, as
Lighthill (1978) points out, are the most fundamental waves in fluids because they can
exist in the absence of any external force field. Instead of gravity or rotation, for
example, providing a restoring force for the motions, the restoring force for acoustic

waves is the fluid’s resistance to compression (i.e., its compressibility).

2.1 Basic physics

When viscous dissipation, rotation and gravitational forces are neglected, the

momentum and continuity equations are

ou* 1
~ —mvw:___v*
En +u 7 e p
dp*
V' * ok :0
o TV ()

18




An equation relating density and pressure may be obtained from the first law of
thermodynamics (Batchelor, 1967; Chapter 3). It can be shown that, if pr=p(p*,T)

and the motions are adiabatic so that 9S/8¢t = 0 where S is the entropy, then

(50),= (55) . ()
Dt /)]s JOp* S Dt /s

A solution of these equations, although trivial, is

p" = p*(p*,S) and

Pr=po; pP=po; U =0

This solution is not very exciting, so we would like to study small deviations from it.
Thus, we write

pPr=potp;p=pot+p;ui=0+7
where p, p, 7 are of infinitesmal amplitude. After substituting into the original

equations and neglecting products of small quantities, we have

oG 1
I
Jdp L

ot ot

where ¢? = (9p*/9p*)5'. After eliminating @ and p in favor of p, we obtain

52
—a—t—g - Vi =0

We recognize this as a wave equation which was listed in Chapter 1. It is easy to show

that the other variables p, u, v, w each satisfy a similar equation.
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2.2 Plane waves

Consider a homogeneous medium; ¢(Z,t) = cg. Then p = e~"ottikztily+imz oglyeq the
wave equation provided

o = c(k* + & +m?)
which is the dispersion relation. For fixed o, the locus of allowed wavenumbers in
k,£,m space is a sphere of radius o/cy. All wavenumbers k= ki+ 07 + mk extending
from the center of this sphere to its surface are allowed. In a given plane wave, phases
propagate along the wavenumber vector at speed cy; that is, O’/“—:l = ¢g, so the waves

are nondispersive. The group velocity ¢, is defined by

Jo do o
o SR = op T
and it is easy to show that |¢;| = co. <

H(F-&-at

If p=ae ), then the momentum equations say —ic#@ = —il:;p/po, or

This means that @ and k are parallel, i.e. these are longitudinal waves (displacement is
parallel to the direction of wave propagation). Also, @ and p are in phase in this

travelling plane wave.

2.3 Reflection at a solid boundary

Suppose a plane wave of the form

Dine = poe—iat+ik1:+ily—-imz
ne —

P —
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is incident upon a solid boundary. At the solid boundary, the normal velocity must

vanish; 4 - = 0 which means that Vp-f = 0. If the solid boundary is at z = 0, then

the boundary condition is
p.=0 at z2=0
incident * z

wave

reflected
wave

To satisfy this boundary condition, we must add a reflected wave

—tot+ikztily4+imz
Prey = Po€

to the incident wave. The solution is

—tot+ikz+ily

P = Dinc F+ Pref = 2pge cosmz

Suppose the solid boundary is tilted, say z = az, and the incident energy

approaches along l-c‘i while the reflected energy travels along l;,.
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normal

If pine and p,.s are to sum such that p = p;,. + Pres satisfies Op/On = 0 at the solid

boundary, then we must have
]1;:,| cosf; = ]E,{ cos 0,

1.e., the projection of the incident wavenumber on the boundary must equal the
projection of the reflected wavenumber on the boundary. But we know that

k| =

k.| = o/co, 50 0, = ;. That is, the reflection of these waves is specular. (This is

not true of all waves, however.) Note that dp/dn = 0 at the boundary means @ - = 0

there, so i, -+ N = —Upef 1.

2.4 Plane waves in a channel

A very important aspect of wave motion is the effect of boundaries which form a
channel or waveguide. Thus far, the plane waves we have considered have not been
restricted in the choice of wavenumbers. That is, the entire continuum of k, £, m
choices has been available, provided we were willing to accept whatever frequency was
required by the dispersion relation. We saw that the form Qf the plane wave was
altered somewhat due to the presence of one boundary, so now we consider the effect of

a second boundary.
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z=0E

Now the field equation is still valid in the interior of the channel, but the free waves
must satisfy dp/0z = 0 on both boundaries, at z = 0, —D. To find a solution, we
assume that the waves are free to travel along the channel, but that the cross-channel

dependence is unknown.
p(l', Y, z, t) — poe—iat-{-ikr-f—il’yp(z)

This is substituted into the field equation to obtain an equation for the cross-channel

structure

P, 4 (0% =k =) )P =0
P,=0 at =z=0,-D
This equation has the solution

P(z) = cosnrz/D

provided that
o2/t =k* + 02 + n?*r?/D? n=0,1,2..

23




Notice that these solutions are each a sum of two plane waves

1/2p06—iat+ikx+i€y+in7rz/D + 1/2p08—iot+ikx+i€y-—imrz/1)

which satisfy dp/0z = 0 at z = 0 regardless of whether n is an integer or not. However

bl

to satisfy dp/0z =0 at z = —D, we need n = 0, 1,2.... These solutions are called

wavegutde modes.

Another important point to notice is that each three-dimensional plane wave by
itself satisfies the dispersion relation, so that both waves are the usual nondispersive
plane waves if we think of n as continuously variable. Yet the solution viewed as a

two-dimensional plane wave restricted to the channel direction is dispersive!
con = o/ (K* + 62)1/2 = +tco[l + n®r?/(k? + KQ)D?-]l/?
The horizontal group velocity do/dk, do /0l is
& = colki+ €5)/(k* + €* + nx?/ D})'/?

It is parallel to the horizontal wavenumber ki + €7 but not equal to the phase velocity.

n=0

(k2+12) 1/2

The n = 0 mode actually is nondispersive.

If we fix the horizontal wavelength 27 /(k? + ¢2)"/?, say by a wavemaker of fixed

size perhaps but variable frequency, then there is an infinity of waveguide modes
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n = 0,1,2... of ever increasing frequency o = ¢3(k? + €% + n?x%/D?). However, if we fix
the frequency, then
(k* + %) = a*/ck — n*z?/ D?

and only for n = 0, 1..n,,4, Will k% + €% > 0 where n,,,, = int[(D/7)(0/co)]. That is,
only for n = 0,1..n,,,, will the waveguide modes propagate down the channel! For

example, consider waves in the z-direction only

-1 o2 /c2 —n2x2/D2)1/2 nmwz
n < Moy p = ¢ iotilet/gontn? (D) e g

——iat-—(n27r2/D2-a2/cg)l/2r S nmwz

n > Npaz p=e

The first set represents travelling waves. The second set represents evanescent waves
which decay exponentially away from their source. Practically, this means that if we
have a harmonic wavemaker in the channel, then we may expect to see more

cross-channel structure near the wavemaker than far away from it.

2.5 Scattering at a discontinuity

We have considered the effect of a solid boundary on the propagation of sound waves.
Suppose, however, that a plane wave encounters a boundary between two fluids at

which the properties change abruptly, i.e. a discontinuity.
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Py

Pr

This discontinuity could represent the air-sea interface or the ocean bottom (which is

not truly a solid boundary because it transmits sound waves). In both cases the

incident wave approaches the discontinuity while travelling through the medium which

has density p; and phase speed ¢;. The density of the medium on the other side is P2

while the phase speed is c;.

For the case on the left (upward propagating incident wave), the incident,

reflected and transmitted waves have the following forms;

Pr

PR

Pr

. ae—«iat+ikx+im12
_ Rae——iat+ikx—imlz

- Tae«—iat+ikr+im-zz

where R is the reflection coefficient and 7 is the transmission coefficient. Notice that

the incident and reflected waves have the same wavenumber component in z but that

they propagate in opposite directions. The transmitted wave has a different

wavenumber in z because the medium has different properties. The wavenumber in the

direction of the boundary z as well as the frequency o are the same for all three waves

because there is nothing in the fluids which would change them.
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To solve the problem, we require that the pressure as well as the velocity normal

to the boundary w be continuous across the boundary. That is

pr+pr=pr at z=0

1 1
—(pr: + pr.) = —pr. at z=0
1 P2

Now, substituting the expressions for p;, pr and pr, we obtain

1+R=T

m, mo

1—R)=—=T
Pl( ) P2

From the dispersion relation, m = o cos/c which changes the second matching

condition to

1 1
—(1 = R)cosfy = —T cosOr

P1Cy P2c2

These can be combined to yield

R pacy cos @y — pycy coslOp

paCy cos B + picy cosOp

T 2pacq cos O
pa2cq cos 1 + pycy cos Or

Identical expressions for R and T result for the downward propagating incident wave.

We see from these expressions that if the density times the phase speed of the
second medium is much less than that of the first, pyc; < pie, then the transmission
coefficient vanishes and the reflection coeflicient goes to unity, 7' — 0, R — —1. This is
consistent with the result we obtained for a solid boundary. It is also nearly the case
for the boundary between the ocean and the atmosphere where pc is about 1.5 x 108 kg

2 571 for the atmosphere. So, very little sound is

m~2 s~! for the ocean and 400 kg m~
transmitted from the ocean to the atmosphere. On the other hand, a sound wave in

the atmosphere is actually amplified upon encountering the ocean. That is, if medium
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1 is the atmosphere, then T' — 2. Of course, the sound wave in the atmosphere travels
so slowly relative to the ocean that its energy flux is generally fairly small, so the
amplification is a rather small effect as well. In either case, the energy flux in the z

direction is conserved because

lprwr| = |prwg| + |prwr|

To complete the calculation, we must find the angle of the transmitted wave, 0r.

This is found by writing the frequency on both sides of the discontinuity as
o =c (k* + mf)l/2 = cy(k* + m%)l/2

We can write this in terms of the wave angles since (k? + m?)'/2 = k/sin . Thus,

sinf;  sinfr

(&1 Co
which is known as Snell’s Law. From this we see that, if ¢; < ¢y, then there exists a
critical angle of incidence
0rc = sin™!(c; /o)
beyond which there is total reflection of the incident wave despite the fact that the

second medium can support sound waves. The boundary is then effectively solid.

Pr

9, pI pR
pl pR
6, <0, 6,=6

Ic

This is called total internal reflection.
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2.6 Generation of plane waves

At this point, it is natural to ask how these plane waves may be generated. What
initial or boundary conditions or forcing terms are needed to generate solutions of the
wave equation corresponding to some physical situation? If there are wavemakers in

the medium, they can be modelled by body forces F/po and mass sources ()
d, = —Vp/po + F/po

pe+ poV i =Q

Combining these with p, = c?p, yields

-

Pt — 02V2p = C2(Qt -V F)

We can now consider two types of problems: initial value problems and those forced
from rest. In both types we solve the homogeneous wave equation while satisfying
dp/dn = 0 on the solid boundaries and requiring outgoing waves at infinity, i.e. a
radiation condition. For the initial value problems, p and p, are specified at time t = 0,
while for those forced from rest they are set to zero. Of course, there is not really a
fundamental distinction because solutions of one type may be linearly superposed to
obtain solutions to the other type. The solution procedures may, however, be quite

different.

2.6.1 An initial value problem

Let us consider a one-dimensional initial value problem
2
Pt — C'Pre =0 —00 <z <00

p(z,0) = Po(z) ; pilz,0) = Qo(z)
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We will solve this be the method of characteristics. The most general solution is
p=f(z—ct)+g(x+ct)

To satisfy the initial conditions

f(@) +9(z) = Po(z)

—cf'(z) +cg'(z) = Qolz)
The second integrates to f(z) — g(z) = —1/c 5 Qo(z’) dz’ + K whence
2f(z) = Polz) - l/c/ Qo(z') dz' + K
0
29() = Roe)+1/e [ Qo(e!) da’ - K
These give the solution as
r+4ct
p(z,t) = 1/2[Po(z — ct) + Po(a + ct) + 1/c/ z Qo(z") dz']
Note that p(z,t) depends only on the initial conditions over the range z + ct.
If Qo(x) = 0, then the solution is very simple
plz,t) = 1/2[Po(z — ct) + Po(z + ct)]

for which case the solution could have been obtained using the Fourier method,

although it is not the method of choice in this problem. Set

pat)= [ plk 1) dk

—CO

Then
Pu + C2k215 =0

p(k,0) = Po(k) 5 pu(k,0) =0
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The solution to this problem is
plk,t) = Py(k) cos(ckt)
from which

plz,t) = /Oo Py(k) cos(ckt)e™ dk

_ 1/2 /oo Po(k)(eikx+ickt+eikz-—z’ckt) dk

— 0o

= 1/2[Py(z — ct) + Po(z + ct)]

The integration is trivial in this case but not always.

2.6.2 Forcing from rest

Assume that the forcing has the rather simple form
Qi = V- F =5(z)qt)

where ¢(t) = q,(t) = 0 for ¢ < 0 and ¢, is finite. Now we solve

Pt — C2pmr = 6($)qt(t)62

p(2,0) = p(e,0) =0 at t=0
We may put the forcing into the boundary condition by
oF 2 2 0+ _ 2
_/0~ (Ptt —C pa:x) dz = —c Pzlg. = C Qt(t)

That is, pz(z = 0+,%) — ps(z = 0—,1) = —¢;(¢) so that the forcing at z = 0 is

interpretable as a specified discontinuity there. So we must solve
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Py (0.1) =P (0,1) = -q, (1)

X \
—
;X
L 2 L x=0
Pr—=C Pxx =0 pt’?-—czp?x:O

where p* and p? are solutions on the left and right of the discontinuity, respectively.
Most generally, p” and p® are functions of z -+ ct. We write them along with the

requirement of symmetry
pR(w) t) = pL(“x’ t)
p(z,t) = f(z — ct) + g(z + ct)

pL(x,t) = f(—z —ct) + g(—z + ct)

Imposing the jump condition at z = 0 yields
fi(=ct) +g'(ct) + f(=ct) + g'(ct) = —q,(t)

but this does not specify f and g. To specify them, we must impose a radiation

condition, i.e.,
pl(z,t) = f(z — ct) p™ is all right going waves

pH(z,t) = f(—z — ct) pY is all left going waves

Now we have

2f'(=ct) = —q(t)
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from which
R c
pi(e,t) = Sal-efet )
c
Pi(et) = ga(a/c+1)

Thus, forcing at the origin is modelled as a jump in p, and we must assume that all of

the motion is away from the source in order to get a unique answer.
If the forcing were harmonic with ¢(t) = e™¢/(—io) then

—iot

Pit — Cpee = 26(z)e

and the solution would be

—C

R —_ —io(—z/c+1t)
r,t) =
pi(t) Q(ia)e
L _ —C —id(z/c+t)
t) = o

In other words, plane waves radiating outwards from z = 0. The radiation condition
that we imposed models a little bit of dissipation in the sense that the solution looks
dissipationless locally, but nothing is reflected from |z| — oo because even small
dissipation attenuates any reflected waves over a long distance. We could, in fact, add
a friction term to the momentum equations and solve again to obtain a solution which

would become the present solution for vanishingly small friction.

2.7 Slowly varying medium

We have considered cases in which the speed of sound remains constant in the medium
or changes abruptly at an interface. However, the speed of sound within the ocean

varies in space because the ocean is not a uniform fluid. In fact the sound speed in the
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ocean is sensitive to the temperature, salinity and pressure of the ocean and may be

described by the following empirical formula:

(s, T, 2) = cotao(T—10)+Fo(T—10)* +70(T—18)*+80(s—35) +eo(T—18)(5—35)+ (o 2]
where the coefficients have the appropriate mks units and have values of

co = 1493.0, ap=3.0, By = =0.006, 7o = —0.04, 6 = 1.2, € = —0.01, (o, =0.0164

This says that the speed of sound varies quadratically with temperature, and linearly
with salinity and depth. The depth effect is due to changes in the ambient pressure.
For typical ocean conditions, the temperature effect dominates in the shallow water,
while the pressure effect dominates in the deep water. The sound speed increases with
an increase in either temperature or depth, so there is typically a sound speed

minimum in the ocean interior.

c(m/s)
1490 1500
1 !
|
1200 - Deep Sound
B Channel
N
s
&
Q
4000 -

The situation is different in the arctic where there is little effect of warming near the

surface. There the sound speed tends to decrease right up to the surface.
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We can examine the effects of these variations in sound speed by applying our
knowledge of ray theory. We must assume that the wavelengths of the acoustic waves
are much less that the scale over which the sound speed changes. That is, the
wavelength must be small compared to the total ocean depth. We will consider only
two dimensions, the vertical and one horizontal. Recalling our discussion of ray theory,

we write the dispersion relation as
o= Qk,m;z)

Since the medium varies only in z, we have dQ/dz = 0, 9Q/dt = 0 but Q/dz # 0.

Thus, the ray equations become

AN
di
dk
dt

dm _ %
dt 0z

These say that the component of the wavenumber in the z direction remains constant

in time (which makes sense since the medium varies only in z), and that the frequency

remains fixed at the initial frequency. We could integrate these following along a ray
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with the group velocity, but we will examine the qualitative behavior by considering
Snell’s Law which can be derived in the same manner as for the case of scattering at
the discontinuity. The frequency can be written in terms of the angle that the
wavenumber makes with the vertical to obtain

sinfy sind

Co c(z)

or

sinf = @ sin
Co

where ¢y and 6y are the initial values.

Consider the case in which the sound speed decreases with depth, ¢ = ¢p(1 + z)
(remember that z is positive upwards). This means that a wave moving upward moves
into a region of increasing sound speed, so the angle with the vertical must increase as

well. Thus, the wave moves toward a horizontal path. This may also be seen from the

ray equations where —9§1/0z < 0, so that m must decrease with upward motion.
Decreasing m leads to a more horizontal propagation path.

Cc

ko kO

T mo/ mq| 7 m;h

Similarly if ¢ increases in the deep ocean, sound waves moving downward will be

turned toward the horizontal.

When the ray becomes nearly horizontal, ray theory must be applied very

carefully. From the ray definition, we can write

_d_z_ ¢y 0Q/0m

m 52 2
dz  cpe  O0Q/0k Tk <c2(z)k2 - l)
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which gives the slope of the ray path. This may be approximated near the critical level

z. by expanding in a Taylor series to obtain

dz d o? 12
Eg’ ’.:J. I\(z — ZC)_‘E (CZ(Z)k2>z=zC:]

which integrates to

A Py | R
G 4 |dz \ 2(2)k? s T o

Thus, the ray path is parabolic near the critical level, so an upward propagating ray

turns downward.

Similarly, a downward propagating ray which encounters an increasing c at
depth will eventually turn upward (provided it does not intersect the bottom). The
end result is that the minimum in the sound speed acts as a sound channel where
acoustic energy can propagate over hundreds of kilometers without encountering the
bottom provided the incidence angle is not too oblique. Numerous examples are
reproduced in Apel (1987). This is the basis of acoustic tomography, in which this
efficient propagation is used to infer properties of the ocean. Sound waves are
generated at a source and received at a listening station. For a fixed vertical profile of
the sound speed, the rays may be calculated using ray theory. The received signal is
then compared with that expected for a horizontally uniform medium, and differences
are used to deduce various physical phenomena which might have occurred along the
ray paths. This is generally called an inverse problem because boundary observations

are used to determine the interior physics, rather than the reverse.
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Chapter 3

Surface gravity waves

Probably the most familiar form of wave motion with which we have extensive
experience is surface gravity waves. This class of waves includes most of the waves
which occur on the interface between the atmosphere and a body of water, be it the
ocean, a lake or a puddle. The restoring force which makes such waves possible is

gravity — hence the name.

3.1 Homogeneous medium

Let us consider an inviscid, incompressible, homogeneous fluid bounded by a free

surface near z = 0 and a flat bottom boundary at z = —D.
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