Chapter 3

Surface gravity waves

Probably the most familiar form of wave motion with which we have extensive
experience is surface gravity waves. This class of waves includes most of the waves
which occur on the interface between the atmosphere and a body of water, be it the
ocean, a lake or a puddle. The restoring force which makes such waves possible is

gravity — hence the name.

3.1 Homogeneous medium

Let us consider an inviscid, incompressible, homogeneous fluid bounded by a free

surface near z = 0 and a flat bottom boundary at z = —D.
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Because the fluid is inviscid

Di/Dt = —=Vp/p — gk

If the vorticity is defined as

w=Vxdq

then we may take the curl (Vx) of the momentum equations to obtain
D&/Dt = (& - V)i

In this form, we see that if initially &(&,0) = 0 everywhere, then &(&,t) = 0 forever.
We therefore suppose that the motions we consider are generated without making @

nonzero, so that V x @ = 0. This being the case, we can define a velocity potential by
i(3,1) = V(i)
Since the fluid is incompressible, V - @ = 0, so
Vig=0
The boundary conditions are derived as follows. At the bottom, z = —D, we

require that w = 0, i.e.

¢, =10 at z=-D

The free surface is made up of fluid parcels (i.e., points that move with the fluid

velocity field, ‘lumps’ of the continuum but not necessarily or probably molecules)
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which never leave the interface. Consider one such parcel. It moves vertically (i) if the
interface rises or falls, or (ii) if the fluid flows horizontally under the sloping interface.

If we let z = n(z,y,t) be the interface, then
wle,y,n(z,y,1),t] = e +ung +on, at  z=7
This is really just a restatement of Dn/Dt = w. In terms of ¢, this says

e+ ¢a:77x + ¢y77y = QSZ at <=7

This is nothing more than a kinematic condition which simply says what we mean by

calling z = n an interface.

The interface is massless. In the absence of surface tension, therefore, it
supports no pressure differences across it. The appropriate dynamical boundary

condition is
p(xv Y, 1, t) = Patmosphere

To write this in terms of @, 7 return to
i+ (- V)i = =Vp/p - gk

Using the identity
(- VYi=(Vxu)xid+ V(@ ad/2)

we can rewrite this (exactly) as
U +dxud=-Vp/p—V(i- i7/2)—Vgz
Now if & = 0 so that @ = V¢, then this becomes
V(g +p/p+ %IWV +gz) =0
bt plp+ gzt 5V = (1)
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which is the Bernoulli integral. We apply this at z = 7 to find

1
és + -Q-IWV + 91 = f(t) = Patm/p

The function f(t) may be chosen to cancel the space independent part of pym(z,y,1).
We may as well do this since f(t) only adds a space independent part to ¢. For

constant (i.e., spatially non-varying) py¢m, we then have
1 2
¢t 5IVOl +gn=0 at ==y

Notice how a specified pgi,(z,y,t) would enter the problem through this boundary

condition.

The full problem is

UP + sz‘nx + ¢y77y = ¢z at Z2=7

1
¢t+§!V¢|2+gn=0 at z=n
Vig =0

¢, =0 at z=-D

3.2 Linear solutions

To get some idea of possible solutions, we will linearize and solve in one horizontal
dimension. For now we just drop the nonlinear terms. We will check a posterior: that

they are small compared with the linear terms. The linearized problem is
m=¢, at z=0

$t+gn=0 at 2=0
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Notice that the surface conditions have been applied at z = 0. We seek plane wave
solutions n = ae™" %= and ¢ = Ae™"""**2 7(2). The interior equation gives

—k*Z + Z,, = 0 which has the solutions Z(z) = e***. The linear combination of these
that satisfies the bottom boundary condition is Z(z) = cosh k(z + D). The free surface

conditions may be combined into

I
o

&y

du+9o, =0 at

The solution

¢ = Ae " cosh k(z + D)
satisfies this provided
o? = gktanh kD

which is the dispersion relation.

o}
o=\gk

o=\{gD k

k
Finally 7, = ¢, and ¢, + gn = 0 say that if n = ae™ !+ then

A = —iac/(ksinh kD) = —tag/(o cosh kD)

These are the plane wave solutions. They are dispersive and the same wavelength can

propagate in either the 4z or the —z direction.
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For completeness, we take the real parts

n = acos(kz — ot)
b = —= h k(z + D)sin(kz — ot
= Temnip CshA(z sin(kz — ot)
ao
U = ¢y = TiD cosh k(z + D) cos(kz — ot)
ac .
w o= ¢, = D sinh k(z + D) sin(kz — ot)
2
pota
= - — : —
P pgz + TS kD coshk(z + D) cos(kx — ot)

0 = gktanhkD

Notice that n,u,p are in phase and that p is not hydrostatic.

The above derivation is valid for waves of any wavelength and for fluid of any
depth. However, the case of deep water waves for which the depth of the fluid is much

greater than the wavelength of the wave, kD — oo, may be more appropriate to some

waves in the deep ocean. In this limit, the plane wave solutions become

n = acos(kx — ot)
¢ = %—g-ekz sin(kz — ot)
o = gk

3.3 Internal waves

The interface between the atmosphere and a body of water is not the only interface
which can support gravity waves. In fact, any interface separating two fluids can
support gravity waves. Consider the interface between two semi-infinite fluids of

different densities. We have
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At the interface z = 0
e = d)lz ) e = ¢22
PP+ gn) = pa(das + gn)

We can satisfy these equations and the finiteness of the solution as z —» +oco by taking

¢1 — Ale-—iat-f-ik.r—kz
¢2 — A26~iat+ikx+kz
n = ae—iot+ikm‘

The three interface conditions become
—wwa=—kAy ; —ica=kA; ; p(—icA; +ga) = p2(—to Ay + ga)
which yields
Av=tac/k 5 Ay=—iac/k 5 pi(0®/k+ g) = py(=0/k +g)
The latter may be rewritten

0_2 :ngZ — /1
P2+ p1

Note that if p; = 0, then we recover the deep water dispersion relation of the previous

section, o? = gk.
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For general p; < p;, the quantity ¢(pa — p1)/(p2 + p1) can be regarded as a
reduced gravity, typically denoted by ¢’. In the ocean, ¢’ ~ O(107%)g. These interfacial

waves are called internal waves, and from o?

= ¢’k we see that they move much more
slowly than surface waves. We will spend several future lectures examining internal

waves in much greater detail.

Note also that if p; > ps, then 0% < 0 so that o is imaginary. Now e~
represents exponential growth or decay in time. This corresponds to gravitational

instability of the interface because heavier fluid overlays lighter fluid.

3.4 Qualitative retreatment of surface waves

Let’s redo the problem of surface gravity waves to bring out a few points.

a) The full momentum equations are Di/Dt = —Vp*/p — glAc, Separate p* as
p* = po(z) + p(Z,t) where pg is the hydrostatic part of the pressure which satisfies
0 = —po./p — g and p is a small perturbation from py. The linearized momentum

equations become (in one horizontal dimension)

U=—pz/p i W=-pfp 5 Uptw,=0

At the bottom w =0, i.e.,, p, = 0 at z = —D. At the surface, Dp*/Dt =0 at z = 7, for
which the linearization is p; + wpo, = 0 at z = 0. Using the definition for the
hydrostatic pressure, this becomes p; — gpw = 0 at z = 0, or using the vertical
momentum equation, p; + ¢gp, = 0 at z = 0. Now compare these with the results of the

previous linearization:
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Uy = “‘Pw/ﬁ u= st

Wy = —p./p w= ¢,
Uy +w, =0=Vip=0 Vig=0
ptt+gpz:0atz“_-0 <z5“+g¢z:()atz:0
pz=0atz:—-D QSz:Oa,tZ:—D
We see that, in this linearized problem, p = —p¢, which could also have been obtained

from the Bernoulli equation.

b) When is the linearization valid? To answer this, consider the surface condition

¢+ gn + %|V¢[2 = 0 at z = 5. The linearization is ¢; + gn = 0 at z = 0. Now

Qst‘z:n - d)t'z:O + 77¢tzlz=0--~
= [—i0A+ a(—iokA)e otk mivthibe
where we have used ¢ = Ae™"o"*+=+k2 which is appropriate for deep water waves. So
we see that n¢s, < ¢, provided —ickAa < —ioA. That is, provided that ak < 1. This
means that the linearization is valid for waves which have a gentle slope. Evidently

deep water waves are the beginning of an expansion in (ak) of solutions to the full

equations. We will return to a more formal expansion of the equations shortly.

c) The foregoing linearization yielded

u=-=pylp 5 we=-pilp—g ; up+w,=0

Suppose the wavelength A of the wave is much longer than the water depth D. Then
Uug + w; = 0 becomes, in order of magnitude, v/A = w/D or w = uD/\. If D/ — 0,

then w — 0 and the pressure becomes entirely hydrostatic, 0 = —p:/p —g. Hence

p* = gp(n — z) which leads to the new linearized momentum equation of

Ut = =GNz
Notice that this implies u is a function of z and ¢ but not a function of z since
n= 77(37’ t)'
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Now, from continuity and v # u(z),

n
z T d = 0
LD(w +u,) dz
n
m+u77z+/ up dz = 0
-D
ne+un+ D). = 0.
Linearization of this (n <« D) yields

e+ Du, =0

which, along with the new momentum equation above, are the linearized shallow water

equations, so called because D <« A. Eliminating u between them yields

Mt — gD??m = O

1/2

which is simply a one-dimensional wave equation with ¢ = (¢D)"/*. From this, if

n = ae~% then o/k = +(gD)"? and

gak . .. i
u = e tot+ikx

ag
—igak? -
w = tga <z+D)6—wt+zk$
o2
p* = gp(n—2)

Note that w # 0, but rather w <« u, and we will see shortly that w enters the solution

at second order.

3.5 Careful retreatment of surface waves

The last sections have shown that the waves are very different depending on whether

the wavelength is much greater or much less than the depth. A more systematic
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treatment returns to the full problem

1
b+ gn + (43

+o,+6)=0 at z=y

Ny + ((/533772 + <J5y77y) = sz at 2z = n

Vi =0

¢, =0 at z=-D

Introduce the following scaling

dimensional =

(z,y) =

Z prmacs

t =

For example now

a(gD)'/? gal

dimensionless
(z,y)L
zD
tL/(gD)*?
na

gal
¢

(g D)2

(from ¢; + gn ~ 0)

77t+¢z77x = ¢z
a gal

becomes

D(gD)\/? s

ne+(a/D)gen, = (L/D)*¢, at

We see that the only two dimensionless numbers that appear are

e=a/D ; 6=D/L

which are called the amplitude and the aspect ratio, respectively.

We obtain for all of the equations:

bt g+ )+

-2

5 ¢z+77:() at z =e€n
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M+ €(Nete + dymy) = 620, at z=ep
¢22 + 62(¢(L’:L‘ + ¢yy) = 0

¢, =0 at z=-1
a) Notice that if we take € < 1, § = 1, then we obtain
pe+n=0 ; m=¢, at z=0
Vi =
p, =0 at z=-1

which is the dimensionless version of the deep water wave problem we previously

derived.

b) Consider now ¢ = 1, § < 1. Let ¢ = ¢y + 6%¢3 + ..., and insert this into the interior

equation. At lowest order
§@% By, =0 ; ¢o, =0 at z=—1
which means that ¢q is independent of z. At next order

6(2) . d)?zz + ¢’Oa:a: + ¢0yy =0 ; ¢22 =0 at z=-1

which yields

a(2,y,2,1) = (2 + 1)*(Pozz + boyy)/2
Therefore

¢ = do(e,y,t) — (2 + 1)6*(boss + Boyy) /2

This expression is now substituted into the surface boundary conditions to obtain
1
dor + 596z + 65,) + O(6%) +n =0
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ht + (hdos)s + (hoy )y = 0 4 O(8?)

where h =1 4+ 7. Note that these equations are now the field equations because the
dependence on z is gone. Recall that ug = ¢q,, vg = doy, etc. Inserting these into the

above yields

Ilg + (Uoh)a; + ('Uoh)y = 0
Ugt + UoUgy + Voloy = —7,

Vot + UgUoz + Voloy = —T)y

These equations can be converted to the dimensional form by multiplying the right
hand side of the second and third equations by g and by interpreting & as D + 1.
These are the nonlinear shallow water equations. We previously arrived at their
linearization by heuristic reasoning. Note that w = @, = §%¢,, which is O(§?), in

agreement with the result that we obtained using heuristic arguments.

3.6 An initial value problem

Now that we have established appropriate linearized equations for deep and shallow
water waves, we consider an application. Since o = gk is quadratic, it is likely that
solutions for n(z,t) on —oo < & < oo require specification of n(z,0) and n,(z,0). If we
set

U(I,t) — /__oo[c(k)eiat-‘-ikx + D(k)e—iat+ikx] dk

then
n(z,0) = [ [C(h) + D(k)e™ db

n(,0) = [ io[C(K) ~ D(k)]e™ di

-0
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For simplicity, consider 7,(z,0) = 0. Then 2C(k) = 7, and
U(x,t) = 1/2/ ﬁo(k)(eiot-’rikx+e—i0t+ikm) dk

k

where o = (signk) (g|k|)'/? to ensure that waves at frequency ¢ propagate in the same
direction regardless of the sign of k. The solution may be separated into left and right
going wave contributions by writing
_ - 04t % N iet
n(z,t) = 1/2/ io(k)e©+t dk + 1/2/ io(k)e'®=t dk

o0

where

Q4 = kz/t + (signk) (g]k|)"/?

Points of stationary phase are where © = 0 (the prime means 0/0k). Now O/ =0

has no real root for z > 0, so we must use ©_
n(z > 0,t) = 1/2/ To(k)e®-t dk

Thus, for &£ >0
O_ = ka/t — (gk)"/?

whence
0L =/t~ (g/k)* = 0
yields
1
zft = ‘2“(9‘/’%)1/2
and
1/2 923
v g% 228
@_(ko) - 4](73/2 - gt3
Thus
) ] .
T]k>0($ > O,t> ~ §ﬁ0(k0)eze—(ko)t[2ﬂ'/it®z(ko)]1/2

P




becomes
1 . .
Mooz > 0,) = Si(ko)e™ 9% 6=/ (rge? 7)1 /2

An identical contribution obtains from k£ < 0, so
t
n(z > 0,t) = 7o(ko)(7g) 1/2 vz cos(gt*/da + w/4)
If no(z,0) = 6(z), then 7jo(ky) = 1/27 and then

n(z > 0,t) = %(g/w)1 -:—ﬂcos(gtz/éia: +7/4)

[f we plot 5(z,t) versus z at a fixed ¢t (snapshot), we see

Lwa e
M=

The wavelength 27/kq increases and the amplitude decreases with z. A wavestaff

4

record of n(z,t) at fixed z shows

n

Clearly neither kg nor oy is constant at any fixed z or ¢. Yet it turns out that

Jdo

00t+5‘k‘]1c000x =0 ; kot koz =0

7
ok ™
i.e., if we travel at ¢/t = do/0k|y,, then oy and ko do not change.

It 1s instructive to consider the same problem from the ray theory point of view.

Ray theory postulates a solution of the form n = ae'f’, defines a local wavenumber k by
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k= 0P/0z|, and a local frequency N by N = —dP/dt|,, and asserts that these satisfy
the plane wave dispersion relation N = Q(k). We now see that the stationary phase

solution does all of these things as well. Since P = t0 = koz — Q(ko)t, we have

o0 | Ok
N = Q(ko) + (CII - —a?ot)—a—to == Q(k‘o) = 0Jg
,‘ o0 dky

where o¢ = Q(ko) and z/t = 9Q/Jky have been used. Thus, the phase P and the local
wave parameters ko, g satisfy the relationships asserted by ray theory. We further

have

vor oop
dr ot T dtox 't
i.e., 0oz + kot = 0. Since o9 = Q(ko) and oo, = (/) Oko)kos, then we recover
do do
00t+'57€"k000z =0 ; k0t+5];|kok01 =0

which again says that ky and og do not change if we travel at the group velocity. This

much all by itself tells us that if we are at (z,t), then the solution there looks like

ae~ioot+koT where Jo/Ok|y, = z/t.

Ray theory also tells us how to get the amplitude which, in this case, is
prescribed by
€+ (cge)s =0

where € = %pgnn*. So, the stationary phase approximation to this initial value problem
in a homogeneous dispersive medium could have been obtained by the simpler ray

theory approach.

At any (z,t), the stationary phase solution has well defined frequency o, and
wavenumber kg. This is because, at the long times ¢ for which the stationary phase

approximation is valid, dispersion has separated the concentrated initial disturbance
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into a slowly varying wave train of the sort postulated beforehand by the ray theory.
Neither theory handles the details of how the solution evolves near the initial

disturbance.

Note that as ¢ — oo, the foregoing says n(z,t — oo) = ¢. The solution never
‘settles down’. This happens because no(z,0) = §(z) contains infinitely short waves
that travel infinitely slowly. Therefore, at any given (z,t), short waves are still arriving

and shorter ones are en route. This does not happen for the finite initial displacement.

3.7 Ship waves

Let’s consider another application. We have seen, in one dimension, that
no(z,0) = 6(x) , noe(z,0) = 0 leads to

1/2

n(z,t) = REK; et

x

where P = gt*/4z. In two dimensions, i.e. radial spreading, it turns out that

no(z,y,0) = 6(2)6(y) , no(z,y,0) = 0 leads to
n(z,y,t) = %Kg—}—:eﬂj
r

where P = gt?/4r and r = (22 + y?)/2. The dispersive characteristics of the wave train

P

- summarized in € - are common to both one dimension and two dimensions

although the envelope changes from one dimension to two dimensions.

We use the two dimensional result to discuss ship waves. A ship is idealized as a

travelling delta function which moves with speed V.
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| —vt -l -

—vt —r cos© r cos © t=0

At time ¢ = 0, we are at r, 0 relative to the ship. At time ¢ the ship was p(t) from us.

Keep in mind that ¢ < 0. We have, therefore,

e gt

o p
0.t=0 :/ K
" )= 0

where P(t) = gt*/4p(t) and p(t) = (r? + V42 + 2Vtr cos 0)'/2,

This is like a stationary phase problem if P(t) is large. Points of stationary

phase are when P, = 0, i.e.

Wt oo _
4p 4p?
%g;t — i%;%;(?‘ﬂt +2Vrcosf) =0
2p% — V2 — Vrtcos =0
2(r? + V2 4 2Vrtcos0) — V2 — Vrtcosf = 0
2r* + V232 + 3Vrtcosf =0
te = =27 [cos 0 + (cos? 0 — 8/9)/?]
2V
We get an appreciable contribution only when ¢4 lie on the path of integration —oo to
0, i.e. when they are real. This requires cos?§ > 8/9, i.e. 6 < 19°28'. So, for § > 19°28'
we get far smaller waves than for 6 < 19°28'. Notice that this angle is independent of
V. This means that the waves following a ship will be at the same angle regardless of
the speed that the ship travels! (Of course, the ship must be idealized as a point
source.) i
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Inside this cone there are two wave systems e'(*+) and ¢'P(*~), They give rise to

the system of cross waves seen behind a ship.

Small Amplitude

19°28'
Large v
Amplitude
19°28'

Small Amplitude

Details of their shape come from P(t,) = constant and P(t_) = constant.

The V independence is surprising. But remember that these waves are
dispersive — some always travel as fast as the ship regardless of its speed. The
nondispersive case is different. If all waves travel at ¢ [= (¢D)"? in a shallow sea] and

a ship moves at V > ¢, then the wave pattern looks like

Absolutely No Waves

Waves

~ <
]
(@]

Absolutely No Waves

The waves are confined to 6 < sin™"(ct/Vt) which is dependent on the velocity just as
we would expect. This is because the waves all travel slower than the ship. The waves

arrive as a sharp discontinuity.

56




3.8 A wave energy equation

The linearized waves satisfy
pily = —Vp — gpk
V.i=90

From these

(-;:m?' u)e+1u-Vp+gpw=0
In the linearized case, w = z, which can be used with continuity to obtain

[épﬂﬁ-{—gpz]ﬂ—v‘{[p:@

ke + pely + V- efluz =0

Integrate from z = —D(z) to z = 7 and note that

[ [0:up) + 0,(op) + 0.(wp)l dz = 0, [ up dz ~ ptm)un. + p(~D)uD,

+wp(n) — wp(=D)
n
= 0, /—D up dz

Thus

[ Q— 1 — L
[/D§pﬁ-ﬁdz+5pg772]t+VH-/Dﬁpdz:0

[KE + PEl, +Vy-Efluz =0

where K'E and PE are energy densities per unit surface area, Vg = 19/dz + 79/dy

and the overbar denotes a time average over one wave period.

P
’/' E, KE

For
n = acos(kz — ot) 0? = gktanh kD
ao
= —— k in(kz — ot
¢ e iD coshk(z + D)sin(kz — ot)
= + P70 coshk(z + D) cos(ka — ot)
p = —gpz Fenh kD cos z cos(kr — o
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we find that

1
KE = Dl 2
P 4pga

&

so that the total energy is £ = %pga?‘. Finally, after some algebra, the energy flux can

be written
0
Lfluz = / up dz
-D
2
= %pgcﬁ (% coth kD) ‘;k(l +2kD/ sinh 2k D)
\’\f—/\-g—-\,—/
= I 1 do [0k
That is

Efluz = EE,

Thus, the period average of the energy equation is, for the plane wave
L+ Vy-(EE)=0

It may be used to determine E(&,t) from E(&,0) if the wave is slowly varying, i.e. if
a = a(Z,t). This may occur either if a(, 0) is slowly varying or if D is a slowly varying

function of position.

3.9 Slowly varying medium

The ‘medium’ is made nonuniform if the fluid depth is variable in space or (rarely) in
time. The techniques used up to now accomodate this case with little further thought.
However, medium nonuniformity also occurs if the waves advance through currents. If
the currents vary only slightly over a wave period or wavelength, then the waves may

be adequately described by slowly varying representation.
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For concreteness, consider a basic flow U(z,y,t), V(z,y,t), W(z,y,2,1),
P(z,y,z,t) with a free surface z = h(z,y,t) flowing over relief z = —D(z,y,t). It
satisfies

U, +UU, +VU,=—P./p
Vi+ UV, +VV,=—-P,/p
Up+V,+W.=0 or (h+ D)+ [Uh+ D)+ [V(h+D)],=0

Since it is to be slowly varying in the sense that € = L,,/L,, < 1, then we require
he, D, etc. to be O(€). This means that W is O(e)U. The pressure is hydrostatic, i.e.
P = pg(h - z).

Nowletu*=U+u, v*=V+uv, w=W4w, p=P+p, n*=h+1n We
have, for example,

Du*
Dt

=—pi/p—= (U+uw) +UU, + Uuy + vU; + vtiy... = =Py /p — pz/p

Using the definitions of U, V, W, P and linearizing by neglecting products of small

terms yields

uy + Uy + uly + Vu, +oU, = —pg/p

and similar equations for v and v. Making the further assumption that U and V are

slowly varying results in

ug + Uug +Vuy = —po/p
v+ Uve + Vo, = —py/p
wy + Uw, +Vw, = —p,/p—yg

(Note that terms like Wu, are dropped because W ~ Uhy or UD, ~ €U.)
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At the free surface Dp*/Dt = 0 at z = n*. Using the same assumptions as above

and noting that P, + UP, + VP, + WP, =0, we arrive at
pe+Ups +Vp, =gpw at z=0

Finally w* = w*D; +v*D, at z = — D, which becomes w = 0 at z = —D. If we assume

a plane wave solution n = ae™*t+#2+i etc then we obtain a dispersion relation of
o = kU + 0V + [g(k* + %)/ tanh D(&? + 2)'/2]"*

which is simply that for surface gravity waves but Doppler shifted by the background

current.
Using this dispersion relation, the ray theory recipe says that we can carry the
slow space and time variation of U and D parametrically to find N = Q(Z, T,y,t) or

- 1/2
i /

c=k- ﬁ(CL‘,? 1)+ [g]lﬂ tanh D(x,y,t)}

We may write this as o = k - [/ + ¢/ where o’ = (¢|k| tanh |[k]|D)!/2 is the frequency seen
g

by an observer moving at U. Then

QJIQJ
>~ Q

- = Od' o
Cy = :U+§:=U+Cg

Cott

Finally then, we find o(z,y,t), E(az,y,t) by solving

-, -~ o 0 - - 1/2
o+ (U+8) Vo=, =k-U, + o l91F| tanh [F| D(z,y, 1)]
— —t - a(_j a — — 1/2
ki +(U+¢,) Vi =—-Q, = —k - . e [g]k| tanh lk|D(m,y,t)]

—

These fix o(z,y,1), E(x,y,t) once we are given o(z,y,0), k(z,y,0). At least
conceptually they are easy to integrate. To find the wave amplitude, we must

formulate and solve an energy equation.
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3.10 Waves riding on a current

We consider two examples which make use of the above formalism. First, let
D =constant and the current be U = iU(z) 5 iU(z,t). Now
o = Q(k;z) = kU + (gk tanh kD)2 from which

at+(c;+U)0z:0

If a wavemaker always puts waves of constant frequency ¢ into the fluid at z = 0, this
equation says that as we move at ¢/ + U, o does not change. Ultimately this means

that o is constant everywhere (but not o’). Therefore
o = k(z)U(z) + [gk(z) tanh k(z)D]"/?
tells us k(x), in principle.

Consider o,k > 0 and U(z) > 0, i.e. right-going waves and current
U —_—/——

I D\ NN N
A3 "2 VA VAR VA s s

X

f(k) )1/2

(gktanh kD
o—kU

p——— / U=0

) U increases

k

Clearly, there is always a root *. For large U, 0 — kU, i.e. k — o/U. The waves are

longer in a swifter current.
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Consider o,k > 0 and U(z) < 0, i.e. right-going waves in a left-going current.

U X

—

yaN N_NNNAAAN
T [T VAR X

flk)  o+kUl

Ul lul =0
lncreasesK\

)1 /2 }

(gk tanh kD

K

There is a root * for 0 < |U] < ¢, (k). At the upper limit c,(k) = |U|. Waves with

/

, and can stem the current, while those with large & go too slow

smaller £ have larger c
to stem the current and are swept downstream. In reality, the waves break before this
limit. (A second intersection of the two curves generally occurs at large k, but here

¢y < |U}, so such waves would never be realized.)

A second example is that of a shear flow U = JV(z). Waves started from a
wavemnaker at = 0 at an angle 0 to the z-direction refract as they pass through the

current.
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X

We have o = (V(z) + (¢K tanh K D)'/? where K? = k% + (2. As before, with

e—iat+ik1‘+i€y.
)

o+ ¢ Vo=, =0
b+¢, - Vi=-0,=0

where o and { are constant everywhere, but k = k(z). The easiest way to find k(z) is
to realize that o = {V(z) + [g(kQ(r) + 0)Y/2 tanh(k*(z) + 62)1/2D] % fixes k(z). Now

the relation £ = [k*(z) + ¢%]/%sin §(z) = constant tells us 8(z).

For deep water, these are easy to solve:

1/2

o =0V (2) + |g(k*(z) + £2)/?]

leads to
o— LV (z)]*
E*(z) = [ e — {?
and
sinf(z) (kg +03)? (o — €Vp)?

sinfy  (k¥(z) + )12 (0 -V (2))?
Notice that when V(z) — [0 — (g€)}/?]/¢, then k — 0 and the wave no longer

propagates in the z-direction.
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