Chapter 5

Shallow water dynamics

We have seen in the previous two chapters that low-frequency waves tend to have
primarily horizontal motions, and their wavelengths tend to be long compared to the
water depth. This allows the vertical acceleration in the vertical momentum equation
to be ignored giving the hydrostatic approximation, which is equivalent to assuming
that the wave frequency is much less than the buoyancy frequency, 0 < N. These
cases may be grouped collectively under the heading of shallow water dynamics. In
this chapter, we will exploit these simplifications in order to study several types of

waves in detail.

5.1 Laplace’s tidal equations

Until now, we have considered the equations of motion in Cartesian coordinates only.
As a preliminary step toward our study of shallow water dynamics, we consider next
the effects of the earth’s curvature by examining the equations of motion in spherical

coordinates.
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For rotating, stratified flow on a gravitating sphere, the linearized equations of

motion are

ut——iZQsinOv—}—QQcosOw:——&’;
poa cos 6
. . Ds 2
v+ 20sinf u=—— — Q°asinf cos b
poa

wt—2Qcos()u=—E3——g—'[—)+Q2acos20

Po  Po

pe +wpg, =0

up + (veosb)y +acosf w, =0

The spherical system is sketched as

The coordinates are

¢ = longitude of the considered point P

0 = latitude

u = east-west velocity

v = north-south velocity

w = velocity in radially upward z direction
a = earth’s radius

These equations have already been specialized in the sense that the fluid has been

assumed thin compared to the earth’s radius, i.e. Ar < a, so that a could be

substituted for r in all of the coeflicients.
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The radial and north-south momentum equations contain the centrifugal forces
of the earth’s rotation as their last terms. These may be written as the gradient of a
centrifugal potential, V(30 cos?§ r2). This reminds us then that the solid earth and
the ocean surface are not spherical surfaces, but rather equipotential surfaces of the
total potential

1
gr+ 5(22 cos? § r?

which is nearly spheroidal. If we worked in spheroidal coordinates, the only nonzero
part of the potential gradient would be the part normal to the (equipotential)
spheroidal surface. This would be a ‘gravity’ which varies by about 0.3%

(= 100 x Q%a/2g) from the poles to the equator. We shall neglect this variation of
gravity with latitude and approximate the spheroidal surfaces with spherical ones.

That is, we shall neglect the small centrifugal potential.

This neglect is valid on the sphere for geophysical flows rotating with the earth

at speed (). However, in the laboratory, for rotation about the z axis, we have
Linz2, 2
Uy — 200 v = —ghg + -2—[Q (z* + 9y,

1
v+ 2Q u = —gh, + 5[&12(:52 + ),

If the fluid has a free surface, then this surface will take the equilibrium shape of a

paraboloid:
2

h=hy+ Q—(:f + 3%)
2g

If the bottom (z = 0) is flat, then we must write the continuity equation as

2

Q
ht+V~ﬁ[h0+—2—E(m2+y2)] =0

In this case, the neglect of the centrifugal terms produces the standard shallow water

equations which we have already seen. However, depending on the rotation rate and
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the size of the laboratory apparatus, the centrifugal terms may not be small, so the
results of the calculation may have large errors. The neglect of the centrifugal terms is
really most useful for local models on the spherical earth, rather than for laboratory

models.

Besides the familiar Coriolis terms, f = 2{)sin§, the momentum equations
contain other Coriolis terms, 2§ cos . These are due to the horizontal components of
the rotation vector. They are inconvenient because they generally make the solution
o

unseparable. If we proceed as before, assuming time dependence of ¢™*?*, and combine

the radial momentum equation with the density equation, we find
(N? — 0®)w + 2Q cos O(iou) = iop./po
which, when combined with the east-west (¢) momentum equation becomes
(N? — oHw + (402 cos® O)w = i0p,/ po + (402% sin 0 cos §)v — 2Qp,/ poa

If N? > 4072, as is usually the case in the ocean, then the first term is much greater
than the second term. We can then neglect the second term, which amounts to
neglecting (29 cos #)w in the east-west momentum equation. If we neglect one
horizontal Coriolis term, we should neglect both because energy is conserved with both
or with neither but not with just one. The neglect of the other Coriolis term in the
radial momentum equation is called the traditional approzimation. In some sense, we
drop the (2§ cos 8) because vertical buoyancy forces are much greater than vertical
Coriolis forces. Again, this approximation may not be acceptable for a laboratory

experiment.

Having neglected the horizontal components of rotation, (20 cos ), we have

Pe

U —20Qsinfv = ————
poa cos ¢

99



DPs

v +2Qsinfu = —2-
Poa

w, N
Po Po

prtwpo, = 0

ug + (vcos )y +acos w, = 0
with boundary conditions
Pt +wpo: = pr — gwpo =0 at z=0
w=0 at z=-D
We can separate variables as follows
uw o= e 'U(¢,0)F(2)
vo= eV (4, 0)F(z)
w o= e (¢,0)G(2)
p o= e'P(4,0)H(z)

The equations of motion become

P H
(=ioU —2Qsin§ V)F = — 27
poa cos
P
(—ioV +20sing F = 2o
. Pod
(N2 = e YW@ _ P
Po

UgF' +(Vcos0)pF + acos WG, = 0
—10PH — gpoWG = 0 at z=0

WGE = 0 at z2=-D

where the density equation has been combined with the radial momentum equation.

The separation is completed by choosing
W=—iogP, H=gpF, G,=F/d
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which results in

LioU —20sing v = 3%
acos 6
—toV 4+ 2Qsinf U = ——ﬂ
a
dy,
—ioP + [Us+ (Vcos)g] = 0
acos
2 2
a.+ N~ _ ¢
gdy
1
GZ_ZG = 0 at z=0

The first three equations contain variables which depend on ¢ and 6 only. That is,

they contain all of the horizontal dependence of u,v,w and p. The vertical dependence
is entirely contained in the fourth equation which, along with the boundary conditions,
is an eigenvalue problem in which d;! is the eigenvalue. The eigenfunction determines

the vertical variation of w and, indirectly, of u,v and p.

There is an infinite number of sets of horizontal structure equations, cach set
being identical except that instead of the total water depth D, each system now has an
equivalent depth d,. The lowest equivalent depth dj is effectively the actual (constant)
depth. The higher equivalent depths go like 1/n? and correspond to the n** mode
vertical variations of w. The equations for U,V and P are called Laplace’s Tidal

Equations or LTE.

Notice that the separation of variables fails if the bottom is not flat because we
no longer get an eigenvalue problem in z. But if the bottom is flat to a good
approximation, then LTE give the horizontal variation of both surface and internal
modes providing we interpret d, properly. That is, do gives the surface gravity mode

while d,, give the internal gravity modes.
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For free oscillations, only those d, > 0 have physical significance. But the
eigenvalue problem for G may also have negative d,,. These correspond to modes which

are evanescent in the horizontal. They may be excited in forced solutions of LTE.

5.2 Shallow water equations with rotation

If we neglect the centrifugal acceleration terms, make the traditional approximation
and consider motions with horizontal and vertical scales which are small compared to
the earth’s radius, then the equations of motion may be written in Cartesian

coordinates as

1
w—fv = ——p,
Po
1
v+ fu = —— Py
Po
1
0 = —-—pz——g—p-
Po Po

pt+wpo, = 0

Uy +v, +w, = 0

where the flow has been assumed hydrostatic, i.e. w; has been neglected, and
J =28 sind. Remember also that the density has been separated into a background
part which varies in z only and a perturbation, p* = po(2) + p(z,y, z,t) where p < po.
Then the hydrostatic part has been subtracted and the Bousinesq approximation has
been made allowing the function py(2) to be considered constant everywhere except in
the density equation. The vertical momentum equation and the density equation can
be combined to yield

1

N2w =P
Po
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Consider first the case of a homogeneous fluid in which p = 0. The vertical
momentum equation is the hydrostatic relation p, = —gpo (p is now total pressure),
which when integrated yields

ply — p(2) = —gpo(n — 2)

from which
p(2) = Patm + gpo(n — 2)

We shall assume that the atmospheric pressure is zero, so

p(z) = gpo(n — 2)

We see that the horizontal pressure gradient is independent of z, so the equations of

motion can be written

u — fo=—gns
ve+ fu= —gny
Uy + vy +w, =0
Intégrating continuity from z = —D to z = 7 yields
n
/_D(uz +vy) dz 4 W=y — W]=—p =0
Since u and v are not functions of z, then this becomes
(uz +vy) (7 + D) + wlzy — w|o=—p =0
The top and bottom boundary conditions are

—Djtl at z=1n; w=-uD,—vD, at z=-D

Combining these with continuity yields
ne+ [u(n + D)ls + [o(n + D))y = 0
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If we assume that the surface deviations are much smaller than the water depth, i.e.

n < D, then the final linearized set of equations is
ug = fo=—gn,

v+ fu= —gn,
e+ [uDlz + [vD], =0
These are the linear shallow water equations with rotation. We derived the
nonrotating version with constant depth in the chapter on surface gravity waves.

Notice that, for constant depth D, they have the same form as LTE but written in |

Cartesian coordinates.

Now return to the equations with stratification included. As we did in the

previous section, if the depth is constant, we may separate variables as
v = Ulz,y,t)F(2)
v = V(z,y,t)F(z)
w = W(z,y,t)G(z)

p = P(z,y,t)H(z)

The equations become

1

(U, - fV)F = ——P,H
Po
1

(Vi+ fU)F = ——P,H
Po

N*WG = —lPtHz
Po

U+ V,)F+ WG, = 0

If we choose

H=gpF ; G,=F/d; W=Ph
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then the equations reduce to

U—fV = —gPF,
Vit fU = —gP,
Po+d(U:+V,) = 0
.+ Mo _
gdn
Gz—glzG = 0 at 2=0

G = 0 at z2=-D

The boundary condition at z = 0 comes from p = gpon at z = 0. Differentiating with
respect to time yields dp/dt = gpoOn/0t = gpow or HOP/Ot = gpoW G from which the

boundary condition follows.

As in the previous section on LTE, we have separated the horizontal dependence

into a set of three equations which are identical to the linear shallow water equations
for a flat-bottom ocean. As before, the pressure plays the part of the sea-surface
displacement. The vertical structure is entirely contained in an eigenvalue problem in
which d;! are the eigenvalues. These are again the equivalent depths to be used in the
horizontal structure equations. Note that we have not had to assume a periodic time
dependence here because the hydrostatic approximation has eliminated the vertical
acceleration which previously showed up in the equation for G as the ¢? in the
coefficient. That is, the hydrostatic approximation, in this case, is the same as

assuming o? < N2

The real point here is that, in a flat-bottom ocean, stratification makes possible
an infinite sequence of internal replicas of the barotropic, long, shallow water gravity
waves. The horizontal variations of these internal modes are described by the same

equations that describe the barotropic mode, except that the equivalent depth d,
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replaces the total depth D. These modes are uncoupled, so we can solve each set of
equations separately and add them to find a more general solution. Without rotation,

the speed of long barotropic waves is (gdo)/? ~ 200 ms™!

in the deep sea. Long
internal gravity waves move at the much slower speed of (gd,)'/? ~ 1/n ms~!. Thus
for comparable frequencies, the internal waves have much shorter wavelengths than the

surface barotropic mode.

It is appropriate at this point to ask “What exactly does d,, represent?” After
all, each d, is much smaller than the vertical scale associated with the vertical mode n.

One way to understand the d, is first to write the buoyancy frequency as
N =(g/h)'/*  where h=—(po,/po)”" = g/N*

which is the density scale height, i.e. the vertical scale over which the background
density varies. This scale height is typically much greater than the ocean depth. For

constant N, the equation for d,, can now be written as

t D ~ d, 1/2
o ((hdn>1/2> B (75)

from which it is clear that the rigid lid approximation applies when d,/h < 1. In this

~1/2

case, the vertical wavenumber for mode n is given by nw/D = (hd,) which leads to

a vertical scale of A\, = QW(hdn)l/Z. Rewritten, this becomes

A2
dn = 472h

which says that d,, is proportional to the square of the vertical scale of mode n divided
by the density scale height. For n > 1, this quantity is typically small, so d, is small as
well. Another way to view this is that the vertical scale of the mode is proportional to

the geometric mean of the density scale height and the equivalent depth, i.e.

Ay o (hd,)1/2.
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The simplicity of these flat-bottom results is not extendable to the case of
variable bottom topography. However, we should keep in mind that, when considering
the flat-bottom ocean, all of the long shallow water barotropic waves which we are
about to study on the f-plane have an infinite number of internal replicas allowed by

stratification.

5.3 Reflection at a solid wall

We consider first several types of waves which can exist in the absence of rotation.

Therefore, we take f = 0 and the equations are

.

Ut = =gz
Vi = — gy
M+ D(uz +v,) =0
Free wave solutions have the form 5 = e~t+* s+ which leads to
gk g¢
u==n ; v=-=rn
o o
Substitution into continuity gives the dispersion relation
o? = gD(k* + ¢*) = gDK*
These are nothing more than surface gravity waves in shallow water which are
nondispersive with
c=0/K =(gD)* i |g| = do/d|F| = (gD)"?
Suppose the wave is incident upon a solid wall at z = 0. &
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k|

The velocity normal to the wall must vanish, i.e. u =0 at £ = 0. The total solution

may be constructed by adding a reflected wave with the same amplitude and no phase
shift

n = ae——iat+ika:+i£y + ae—iat—ikz-\\-ily

The angle of reflection, o = tan™!(¢/k), is equal to the angle of incidence, i.e. the

reflection is specular.

5.4 Seiches in a box

Now consider a domain bounded by four solid walls.

O Ty Ty rreenrrrvred i » X
. X=a
We assume a periodic time dependence of e~*t so that the equations become

—0U = —¢gn, ; —10V = —gny
—ton + D(uz + vy) =0

(Note that 7 is now different from the full 7 because of the removal of the time

dependence. We should write the new variables with a hat or something, like 7, but
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this gets cumbersome. So, we rely on our memory to reconstruct the full variables —
not a good practice for any formal problem solving.) We can eliminate v and v to find
an equation for the surface elevation

2

V2r]+;—Dn=O

If n = e'**+% then we recover the previous solutions. However, in the box domain, the
velocity normal to each boundary must vanish. From the momentum equations, this
requires

ne =0 at 2=0,a
ny =0 at y=0,b

The solution is then

nrx mny
n = cos <—> cos ( ) n,m=20,1....
a b

When substituted into the equation for n, we get

2 2
o =gD (%—}—Z—Zz—) 72
These are the normal, or free modes, of the nonrotating basin. They are

standing waves with n,m zero crossings in 7 across the basin. Suppose the basin is
forced by an external force, say the wind, and then the wind suddenly stops. During
the time the wind is blowing, water is piled up at one extremity of the basin, thus
creating a pressure gradient. When the wind stops, there is nothing to balance the
pressure gradient, so the water begins to flow down it. There is no friction, so the water
overshoots its equilibrium position of a flat surface, and begins to pile up on the other
side of the basin. This process continues indefinitely (or until friction damps out the

motions in a real fluid). These oscillations are called seiches (pronounced ‘say shez’).
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The gravest mode m =0, n=1; 7= cos(mz/a) has the lowest frequency
0% = gD7?/a? and has a period of T = 21/ = 2a/(gD)'?, i.e. the period is the time
required for a wave to cross the basin (0 to a) and go back again. It has one nodal line
at = a/2. All other modes have one or more nodal lines and their frequencies are

greater than that of the gravest mode.

Quite generally, for a basin of arbitrary shape, the Neumann problem for the

Helmholtz equation
Vi +(c*/gDyy=0 ; 9n/On=0 at boundaries

results in a sequence of free periods o2, o2, o2... having a positive lowest member and

no upper limit.

5.5 Propagation over a step

Consider a free wave encountering a step change in depth.

x=0
f D, D,
D
1 incident
reflected
transmitted

Xx=0
This can be thought of as a shelf of infinite width. At the step, there are two new

waves which can be generated. One is a reflected wave and one is a transmitted wave.
In a sense, the step acts as a permeable or leaky wall rather than a solid wall. There
are no variations along the step in the y direction, so we may assume that all three

waves have the same alongstep wavenumber, as well as the same frequency. Thus, 7
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must go like e™**** so the solutions on each side of the step are
z<0 n= e—iot—-iéy(ATe-—iklz)

z>0 n = e—iat—iéy(AIenikgm + AReikg:z:)

where the amplitudes A; g are unknown. To find the unknown amplitudes, we must
require that the solution is consistent across the step. Without proof, this can be
accomplished by matching the sea-surface displacement () and the across-step

transport (uD) on each side of the step. Thus, at z = 0, we require
Ar+ Ap = Ar

Dako(—Ar + Ar) = Diki(—Ar)

Before proceeding, we should note that this matching of transport completely
ignores the fact that flow should not occur through the vertical section of the step. In
fact, the present solution necessarily imposes a flow through the vertical part unless
the horizontal velocity goes to zero at # = 0 (because there is no vertical variation, so
if the velocity is nonzero at the surface, then it is nonzero at depth). This apparent
inconsistency can be resolved by considering the full equations without the shallow
water approximation. The complete solution is quite complicated near the step, but
the shallow water solution is recovered far away from the step (Bartholomeusz, 1958).
The present solution also conserves energy, which was enough to convince Lamb (1832)
that the results were correct. There are problems, however, in which the simple

matching of pressure and transport leads to erroneous results.

To continue, the matching allows the reflected and transmitted amplitudes to be

written in terms of the incident amplitude

AT _— 2A[/(1 —{- lel/DQk’z)
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AR = A[(l - D]kl/DQkQ)/(l + lel/D2k2)

Notice that, if Dy — 0, then Ap = A; which is reasonable. But Ar = 2A7 which
appears incorrect. This occurs because the shallow side of the step does not vanish
unless the depth is identically zero. Otherwise, the transmitted amplitude simply gets
larger. If Dy = D,, then A7 = A; and Ap = 0, both of which are sensible. If we define

the total wavenumbers as
Kp=Kp=(ki+ " =0/(gDy)"?

Kr = (ki + )'* = o/(gDy)!/*
then,
! = Krsinay = Kgpsinag
ar = QR

so the reflection is specular. Since

¢ = K;sinay = Kysinar

sin oy sin ar

(gD2)/? — (gDy)'/?

sina;  sinarp

cr cr
which is Snell’s law. Because Dy < Dy, then sin oy < sina; so waves are refracted

towards normal incidence (a7 = 0).

Now suppose that the incident wave arrives from the shallow side of the step.
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In this case, the reflected and transmitted amplitudes are still given by the above
formulas and Snell’s law still holds. As o increases, ap increases even faster since

ar > «ar. Eventually, a critical angle of incidence, of, is reached where ar = 90°.

!
For a; = of,

o Dé/z o

(= ]X[Sina] = (gD2)1/2 D}ﬂ = (gD1)1/2 = ]XT

so ky = 0. For af > of,

0> K = (k2 + £2)/?

so k¥ < 0, i.e. the transmitted wave decays exponentially away from the step. There is

total internal reflection.

113




5.6 Edge waves and coastal seiches

We can use these ideas to examine waves which might occur along a continental shelf.
We idealize the shallow shelf as a flat-bottom region of width L. The continental slope
is reduced to a step change in depth dropping down to a flat-bottom deep ocean. This

is the classic step shelf.
x=0 (shelf) X = L (deep sea)
D, |

D,

We anticipate from the foregoing that two kinds of solutions exist. They are (A)
waves trapped on the shelf by critical internal reflection at the shelf edge, and (B)
waves arriving from the deep sea, traversing the shelf, being reflected at the coast and

finally returning to the deep sea. Ray paths for the two cases are

x=0 X =L

In each region, the elevation satisfies
Vi 4 (o?/9D)n =0

We will analyze the two cases separately.
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Case A: Here we write

n = Acoskx O<z< L
n = Be t2@-1) z>1L

which satisfies u = 0 at © = 0 and assumes internal reflection at the shelf edge. The

cross-shelf structure looks like

Thus, we must have
K =0"lgDy = 5 k=0 —0%/gD,
Notice that both k; and k, are real provided
0?/gDy > €% > o2 /gD,
1.e. provided D, < D,.
Matching n and uD (really Dn,) at z = L yields
Acosk,L =B

*‘Dl klAsin le == —ngQB

from which

tan le = k‘gDQ/IClDl

which, along with the definitions of k; and ks, is effectively a relation between o and ¢,

i.e. a dispersion relation.
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The details of solving for the free waves gets a bit obscure and is usually done

numerically with a root solving procedure. The solutions consist of an infinite set of

waves modes which can occur between the lines o = (¢D;)"/?¢ and o = (¢D;)"/?¢.

AC

Each mode has its own ‘dispersion relation’. For large ¢, k; ~ (n7 + 7/2)/L, i.e. the
elevation profile looks like that sketched above with n zero crossings on the shelf
followed by exponential decay into the deep sea. These modes are entirely analogous to
waveguide modes. The shelf break acts as a wall in some sense. If we fix the frequency,
then only a finite number of propagating modes (i.e. propagating in the y direction)

exist. These refractively trapped modes are called edge waves.

Case B: Here we write

n = Acoskz 0<z< L
77 — Beikg(m‘—L) + Ce—ikz(x—L)

which satisfies w = 0 at z = 0 and allows for incident (C) and reflected (B) deep ocean

waves. The cross-shelf structure looks like
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Now we must have
B =0gD, — 0 ; k2 =0?/gD, -0
and ¢* < 0?/gD,. Matching n and uD at = = L yields
AcoskyL = B+ C
—DikyAsin ki L = iDyky(B — O)

from which

A=
CiDQkQ COSs k]L — lel sin le

Once again obtaining solutions is a bit obscure. Notice that the wave amplitudes do
not drop out as they did for the edge waves. This is because the present solution relies
on an incident wave which essentially forces the response over the shelf. There is no
restriction on o, £ except that ¢* < 0*/gD,. Thus, an entire continuum of solutions

exists as indicated in the above dispersion diagram.

We can get a sense of the effect of the shelf by considering the case of £ = 0.

Then Diki = 0(D1/g)!? and Dyky = 0(Dy/g)'/?. The magnitude of A/C becomes

2(Dy/g)"/?
[(Dg/g) cos?ky L + (Dy/g) sin® ky L)1/2

The extrema occur where 9|A/C|/0o = 0 which happens when either cos kL = 0 or

|A/C| =

sink; L = 0. But, since D, > D, the maximum occurs when cos ky L = 0 or

_ (9D1)1/2
o= -——]:—-—-—(mr + 7/2)
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These are the so-called quarter-wave resonances or, in the present context, coastal
seiches. They are like box seiches in that they are standing waves in the cross-shelf

direction, but they have a node in elevation at the shelf break.

If they were forced by a wind stress, however, they would damp out rather quickly
because of the loss of energy to the deep ocean. They are, therefore, sometimes called

leaky edge waves.

5.7 Sverdrup and Poincaré waves

We now return to the equations of motion with rotation. We assume that the rotation

rate is constant, i.e. an f-plane. Taking the time dependence again to be e~¥*, we find

Y .
U = ;2—_—}75(‘](‘771/ — 20'771:)

0_2___gf2 (f’?z + iany)

o — f2
gD

V277 +

n=0
which is analogous to the previous equations for the non-rotating case.

In the infinite domain, a plane wave has the form 7 = ¢**+% which gives the

dispersion relation
o = gD(k* + %) + f?
These are long gravity waves modified by rotation, and are sometimes called Sverdrup

waves. If we orient the axes so that the z direction is along the total wavenumber, then
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¢ =0 and k = |k|. This leads to

u=—1 ok) v:———gﬁ——ik
a.2_f2( )’ 0,2_f2( f)

from which we see that u/v = io/ f. The particle motions are no longer along the
wavenumber vector, but are ellipses rotating in the clockwise direction in the northern
hemisphere. The ratio of major to minor axes is o/ f.

No Rotation — Rotation ———
K, c, Cq k, c, Cq

Rotation makes the waves dispersive with

_9D, . _gb

Cox ;o
g o gy o

The group velocity is again parallel to the wavenumber vector.

These plane waves propagate in the unbounded fluid only when o > f, that is f
is the lowest frequency possible for them to exist. The group velocity rises from zero at
o = f towards an upper limit given by the non-rotating, shallow water dispersion
relation. If o <« f, then we can neglect o with respect to f. The time variation is so
small that the system is quasi-steady. If /9t ~ 0, then the equations of motion
become

—fv=—gns ; fu=—gn,

which represents steady, geostrophic motion. If ¢ = f, then from ¢? — fZ = 0 it follows

that £ =0 and ¢ = 0, so we have
uy—fo=0; v+ fu=0
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which has solutions
u = cos(ot) = cos(ft) ; v =sin(ot) = sin(ft)

These are inertial oscillations which are perfect circles always remaining in the same

place.

Consider now the reflection of a Sverdrup wave from a solid wall. As in the

non-rotating case, we require that the velocity normal to the wall vanish. For a wall at

z =0, then v = 0 there. This leads to
-0, + f, =0 at =0

The solution is found by adding an incident and a reflected wave, although now they

may have different amplitudes. We write
N = aieikx+ily + are—ilcx+ily
which satisfies the boundary condition provided that

—io(tka; —ika,) + f(ila; + ila,) = 0

from which ,k ; ’{j
ok —ift & 4 -

LY L e —S——77

Ty, hould ok - ifL

If f =0, then a, = a;, the reflected wave has equal amplitude to that of the incident
wave and there is no phase shift. With rotation, the angle of incidence tan™'(¢/k) still
equals the angle of reflection, but the reflected amplitude differs from the incident
amplitude by a multiplicative constant with unit magnitude. This means that there is
a phase shift upon reflection. So the waves are standing in the direction normal to the
wall, reflected with a phase shift, and they are travelling along the wall. They
constitute a continuum in the sense that they may occur at any frequency and
wavenumber combination as long as o > f, i.e. the single boundary does not discretize

them into modes. These waves are often called Peoincaré waves.
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5.8 Kelvin waves

A solid wall makes possible a rather special wave which is trapped at the wall and can
propagate with o > f or o < f. This is called a Kelvin wave and is basically a gravity
wave modified by rotation. It has the peculiar property that the velocity normal to the
wall is identically zero everywhere, not just at the wall. Let’s consider the wall at ¢ = 0

as before. The Kelvin wave has u = 0 which reduces the equations of motion to

—fo=—gns ; v =—gn
ne+ Dv, =0
The velocity along the wall, v, is in geostrophic balance while the y momentum
equation gives the acceleration along the wall. Physically, this means that the pressure
gradient along the wall created by the sea-level fluctuation produces an acceleration

along the wall, but the pressure gradient normal to the wall adjusts itself at every

instant so as to be in geostrophic balance with the velocity along the wall.

Assuming the standard time dependence of e™“*, the Kelvin wave moves along

the coast satisfying
2

o
Nyy + g—DW =0
Choosing
1= a(z)e
where a(z) is still of unknown form, the dispersion relation is
o? = gDe?
which is identical to the gravity wave dispersion relation in the absence of rotation!
The function a(z) is found by combining the two momentum equations to find
=107 + fny =0
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Notice that this is identical to the statement that v = 0 which we previously satisfied
at the wall, but is now satisfied everywhere. From this we obtain an expression for
a(z), namely

a(z) = ageltele
The full solution is

—iat+ilyef£z/a e-iat:l:iay/(gD)lﬂi:far:/(gD)l/2

= ape = o

If the wave is on the = > 0 side of the boundary, then we must require that the solution
remain finite as £ — oco. This means that limy_.o 7 — 0 which means that ¢ < 0. That
is, the wave must travel in the —y direction in this case. If the wave were on the z < 0
side of the wall, then we would require that £ > 0 so the wave would travel in the +z
direction. Thus, the wave always travels with the wall on its right in the northern
hemisphere (f > 0; everything is reversed if f < 0). The wave amplitude decreases
exponentially moving away from the wall, so the wave is trapped along the wall by

rotation. A faithful drawing of a Kelvin wave may be found in Gill (1982, p.380).

5.9 Waveguide modes

Consider an infinitely long channel in the z direction with sides at y = 0, y = a.
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We seek to determine the kinds of waves which may propagate subject to v = 0 at

y = 0,a. We must solve
o — f2

v2
n+ 7D

n=10
w0y + fn: =0 at y=0,a

Look for solutions of the form

- mmy . mm
n = ek <cos + a,, sin y)
a a

This satisfies the field equation if

The boundary conditions are

. mnw . mmy mmy , mny . m~w
10— | —sin + a,, cos +:fk( cos + a,, sin
a a a a a

y):() at y=20,a

from which

k
amz-——f-—a m=1,2..
omnm

There is no m = 0 mode because it does not satisfy the boundary condition at y = a.

Notice that as m increases, k decreases and finally becomes imaginary. Only for

o? _ 72 2 1/2
gD ﬁ)

m=1,2...< (
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may these waves propagate along the channel and then only if 2 > f%. They
propagate in either direction. If 0% < f% or m > Mmaz, then these waves decay
exponentially along the channel. They are then meaningless in the infinite channel case
but may represent realistic motion if the channel is walled off at some point. These are

Poincaré channel modes.
Regular Kelvin waves are also possible. As earlier, we may have

n = e-iottioz/(gD) /2~ fy/(gD)!/?

that is, a Kelvin wave moving east along y = 0. We may now also have

n = e—iot=i0z/(gD)" 12+ f(y—a)/(gD)!/?

that is, a Kelvin wave moving west along y = a. If only one wave is excited, then the
surface elevation looks like a regular gravity wave progressing up or down the channel
except that the crest-trough amplitude decays to the left of the direction of
propagation. Because of the non-trigonometric cross-channel variations, the
superposition of two Kelvin waves travelling in opposite directions does not lead to a
standing wave, but rather to motion in which the wave crests appear to rotate about

amphidromic points where the rise and fall vanishes.

Amphidromic
Point

These points are separated by r/k = 7(gD)/?/q; the crests rotate once about each

amphidrome in a period 27 /0.
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5.10 Kelvin wave reflection

The case of a channel closed at one end is interesting, for we see how Kelvin waves are

reflected.

The idea is to have an incident plus an outgoing Kelvin wave. Nowhere is u = 0 for
such a combination although v = 0 everywhere. We now include an infinite series of
Poincaré waves, for which v = 0 at y = 0,a and choose them so that their v at z = 0
just cancels that of the Kelvin waves. Without doing the analysis, we may see one
result. All Poincaré waves are needed to make v = 0 at z = 0. Now if ¢ < f2, then all
Poincaré waves decay exponentially as £ — —oo so that, far from z = 0, the solution is
only the incident Kelvin wave going east along y = 0 plus the reflected Kelvin wave

going west along y = a. But if 02 > f? sufficiently so that

o? — f2q? 1/2
mm,w:( gD ;‘5) >1

then one or more Poincaré waves vary trigonometrically with « and the reflected wave
is not a simple Kelvin wave. Clearly if 02 > f? at all, then if the channel is sufficiently

wide, this will be the case. In other words, perfect reflection of a Kelvin wave occurs if

2 _ g2 2
o — T
ffor

gD a?

It always occurs if o2 < f2. If 02 > f?, it occurs if the channel is sufficiently narrow or

sufficiently deep.
In the case of 0% < f2, or 02 > f? but a is.small, the solution looks like
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and the Kelvin wave ‘turns the corner’. This suggests that in a long thin basin, one
free mode is obtained simply be having an integral number of Kelvin wavelengths
around the circumference. However, all of the foregoing assumes basins with flat
bottoms and perpendicular walls at the edges. Bottom topography and/or sloping
edges introduce yet other modes. The problem of finding the seiches of a rotating basin
1s not solvable in closed form for most basins because the boundary condition @ - # = 0

does not admit separable solutions.

Despite these difficulties, the above ideas have been applied to the problem of
ocean tides, particularly in long thin marginal seas (e.g. Hendershott and Speranza,
1971). Two such basins are the Adriatic Sea and the Gulf of California. In the
Adriatic Sea, the M, tide has a typical cotidal form which has been known since the
beginning of the century. Hendershott modelled the M; tide with two Kelvin waves
travelling in opposite directions along the basin meridional coastlines. To close the
problem at the Northern border, Hendershott allowed for an infinite series of Poincaré
waves just as described above. The Gulf of California is similar to the Adriatic Sea in
shape and bottom topography. However, the Gulf of California has no amphidromic
point! Why? The difference is due to bottom friction. In the Adriatic Sea, the bottom
friction is small, so the reflected Kelvin wave at the northern boundary has an
amplitude nearly equal to the incident Kelvin wave. This allows the existence of an
amphidromic point. The bottom friction in the Gulf of California is much larger due to

the shallow, broad shelf at the northern end. The effect is to damp out the reflected
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Kelvin wave so that its amplitude is much smaller than the incident amplitude. When
these two waves are superimposed, the amphidromic point is shifted toward the side
with the reflected Kelvin wave (west in this case). If the bottom friction is strong
enough, the amphidromic point will be located outside the basin, becoming a virtual

amphidromic point.

5.11 Rossby and planetary waves

These waves were first discovered by Hough (1897, 1898) who solved LTE on a
spherical earth for a shallow ocean by expanding the solution in powers of sinf. He
found two classes of solutions. The first corresponds to the long gravity waves modified
by rotation (Sverdrup waves) which we have already seen. The second class of
solutions was found when the second order term in the expansion, sin’ §, was retained.
That is, these waves appeared when the variation of rotation with latitude was
allowed. In 1939, Rossby rediscovered Hough'’s second class of solutions by allowing the
rotation rate to vary with latitude, but in Cartesian coordinates. This means that he
considered the so-called 8-plane approximation (rather than the f-plane) in which the

Coriolis parameter varies linearly in the north-south direction

f=fo+ By

Otherwise, the equations of motion remain the same. Also, we typically treat f as a

constant everywhere except where it is differentiated with respect to y.

Before launching into the new wave types, consider momentarily the shallow

water equations with variable depth

ug — fo=—gne ; vk fu=—gn
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Ny + (UD)I + (UD)y =0

We can form a vorticity equation by differentiating the z momentum equation with
respect to y and subtracting this from the derivative of the y momentum equation with
respect to z.
[ f
| (v —uy); = —Pv + hl VD + B
Take, for example, D = e=BY// ie. depth decreasing toward the north. Then the

vorticity equation becomes

f

(ve —uy)e = —fv — Bv + Z—jm

This immediately shows that a variable relief which decreases toward the north has the
same dynamical effect on the motion as the variation of rotation with latitude. Thus,
the type of planetary motions we shall now study will have an analogous counterpart
in the absence of 3 but with y-dependent relief. Furthermore, if the topography varies
in a different direction so as to dominate the Bv effects, then the following discussions
could be applied to that situation (with minor modifications) by defining a new

‘effective northward’ direction. This is an important idea to which we will return later.

We first consider the problem solved by Rossby of motion in a shallow,
horizontally nondivergent ocean.
= fo=—gn. 5 v+ fu=—gn
U + vy, =0

The vorticity equation is

(ve—uy)e + Pv=0
The local rate of change of the relative vorticity balances the change in planetary
vorticity. Since the flow is nondivergent, we can introduce a streamfunction

U= =1, 5 v=1,
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and we obtain
Vb, + ftpr = 0
This has a plane wave solution of

Q/) — e~—wt+th+1£y

with the dispersion relation
_ Bk
k242

o
This can be rewritten as

(k+B8/20)* + £¢ = (B/20)*
which is easy to plot on the (k,¢) plane.

AL

— 5= 2%
K, C B
3 L
¥
. - -

The allowed loci of wavenumbers (k,£) form circles in the (k,£) plane with the center
at (—3/20,0) and with radius 3/20. If £ =0, then ¢ = —8/k and ¢ = o/k = — B/ k>
The phase speed ¢ always has a westward component for whatever value of ¢ we

choose. In general

9 - __B
Tk k2 + 02
_c __PE__

“=7 0k + 2)

These waves are called Rossby waves.

129




The physical mechanism which makes Rossby waves propagate westward is most

easily seen for nearly zonal waves 0/Jy < 0/dz. Then the vorticity equation is simply
(v.'L')t + /B'U = O

North-south motions v result in changes in the local vorticity. When the north-south
motion is periodic in z, then the aditional north-south motion generated by the
vorticity resulting from the initial pattern combines with this pattern to shift it

westward.

’ T/\ /\\//— = X V(x, 0) = sin(kx)

N
vy T_\ RN N . Qv 1) =TJ‘I9VdX
S NZ ot

x v(x,t) =v(x, 0) + At %tx

(
(

The group velocity components are

do B 20k B(=K%sin’y 4+ K?cos?y)
Tk T KT KT K*
_ Beos(2y)
B K?
_ 0o 2Bkl —Psin(2y)
‘=% T kT T Ke

so the total group velocity vector is

—

¢, = %[2 cos(27) — 7 sin(2v)]

The situation is as depicted in the dispersion diagram. That is,

4 A, 20 -
|[WCl(2cos§ — ysiné) = FWC

. 20
“= K2
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directed along WC towards C'. We then have an easy way to visualize the flow of
energy and phase. A westward going wave transmits energy eastward. As the phase

propagates more northwest, energy propagates more southeast.

It is interesting to note that, for these nondivergent waves, the velocity vector is
normal to the wavenumber. This can be easily seen from continuity, since u, + v, =0
which, for a plane wave sloution, can be written (Ek + jf) -t = 0. Thus, in a westward
propagating wave,

v=1r =1kt ; u=—,=—tlp =0

This is quite different from the usual case of nonrotating, divergent gravity waves.

A second type of planetary wave was first studied by Bjerknes (1937). In this
case, the horizontal accelerations are negligible, but the flow is divergent. Thus, we
allow for a surface elevation in continuity, but the horizontal velocities are in

geostrophic balance.
—fo=—gn. ; fu=—gn
N+ D(uz +vy) =0

Combining these into a single equation yields

gBD
nt_—}—{'nz'“o

This is a simple first order wave equation which has the general solution

n=F(z+ E%Qt) where F'is any function. Thus, a sea-surface elevation of any shape
will propagate unaltered in this dynamical system. Looking for a plane wave solution
of the form

— e-—iat+ikx+i£y

we find the dispersion relation

98D
o= — k
fr -
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The phase speed is again westward

c=—gBD/f*

and the group velocity is
- A »0o gﬂD -
Cqg = 1Cgzp = la—k = —~7—2
These waves are divergent, nondispersive planetary waves in contrast to the previous
Rossby waves which are nondivergent but dispersive. The north-south wavenumber is

arbitrary and the dispersion relation on the (k,£) plane is

p | W4

|

|

P L
k=91

OB |

|

Y
>

The locus of acceptable wavenumbers forms a straight line.

The physical mechanism which causes these waves to propagate westward is
now very different from that for Rossby waves. Remember that the flow is totally

geostrophic but divergent. Consider a region of high pressure

Convergence: Divergence:
Pressurerises | A B | Pressure drops
atA atB

The flow at A converges because the transport (geostrophic) between a pair of isobars
south of H is greater than that between the same pair north of H because f varies. By

continuity, pressure must rise at A. Similarly, the-flow at B diverges and the pressure
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there drops. The initial pattern of isobars is then shifted westward and the pressure
high moves toward A. The same is true for a pressure low as you can verify for

yourselves.

Now consider the general system of which the two previous wave types were

limiting cases.

us— fo=—gne ; v+ fu=—gn,

77t+D(“x+vy):0

In the usual way, we assume time dependence of e and combine the equations to

form a single equation for v in this case.

: 2 _ 2
Vzv—{—z—évr—l—uvzo
o gD

Notice that the first two terms are the same as those in the nondivergent Rossby wave
balance. Now f is not really constant, but we consider it fixed in order to look for

plane wave solutions v = e***+%_ The dispersion relation is
(k+B/20)" + * = (B/20)" + (o* = f*)/gD

which can be drawn on the (k,¢) plane as
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geostrophic
s divergent
long waves
P 0 k
ageostrophic
nondivergent
short waves

B \2 o221 I :
r=|\zz) +—5] =CC «<COifo<f
Notice the following limits [( 20') gD ]

a) 0 < f and k,£ small. The dispersion relation becomes

_gBD

Bklo+ f*/gD ~0 =0 = 72

k

This is the limit of geostrophic, divergent long waves.

b) o <« f and k large, ¢ arbitrary. The dispersion relation becomes

Bk

(k2+€2)+ﬂk‘/0"’.‘.’0:>0':—m

This is the limit of ageostrophic, nondivergent short Rossby waves.
Notice that for the waves to exist, the radius of the circle must be positive
(B/20)* + (o* = f*)/gD >0
In the Rossby wave limit o < f, the above relationship is
o< B(gD)V?)2f m0.2f
that is,

dr f

" By
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which is about 3 days for a barotropic wave (8 = 2.3 x 107* m~! s~1) but many days
for a baroclinic wave with D = d,,, the equivalent depth. If instead we let ¢ — oo, we
obtain

o = f2 4 gD(k* + (2
which is simply the shallow water gravity waves modified by rotation, with o > f.

The following sketch shows the two dispersion relations together, for the first and

second class waves. o Gravity wave cone
o= 12+ gD (k2+.42)
f
1Bl
! 20 s
//
Vd
<k :
7
7
rd
_____ — = k
o 4
(2“ ) Rossby wave cone
o= —BX
k202 L —f

gD
The top of the Rossby wave cone is defined by r = 0 which occurs at a small fraction
of f, so there is a frequency interval between f and B(gd,)'/?/2f separating the two
classes of solutions. This gap suggests that velocity spectra should show a valley
between these two frequencies with a high frequency boundary at f and a low
frequency boundary at B(gd,)/?/2f. Such an energy gap is indeed observed, but
remember that the linearized dynamics on the 3-plane are very simplified and the

dynamics of the low frequency motions may need a more complete treatment.

The dispersion relation is usually written (for o < f) as

_ — Pk
" T W+ E+ gD
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The length scale
a, = (gD)'*/ f

is called the Rossby radius. There is not one Rossby radius, but an infinite number
because of the infinite sequence of internal modes, each with a different equivalent
depth and, therefore, a baroclinic Rossby radius. Waves which are longer than the
Rossby radius are long, divergent Rossby waves. Waves that are shorter than the
Rossby radius are short, nondivergent Rossby waves. The barotropic Rossby radius has
D =~ dy (ocean depth) and is thus of the order of the earth’s radius. Barotropic Rossby
waves are therefore, relatively high frequency (typically a few cycles per month) and
are able to traverse major ocean basins in days to weeks. Baroclinic Rossby radii are of
the order of 100 km or less in mid-latitudes, and the baroclinic Rossby waves are
relatively low frequency waves. It would take them years to cross ocean basins. Notice,
however, that going towards the equator f — 0 and the baroclinic Rossby waves speed
up to the point where they could traverse major ocean basins in a season. But then we
must relax the mid-latitude B-plane dynamics and study the problem with the

appropriate equatorial dynamics (which we will do shortly).

5.12 Rossby wave reflection

Consider the reflection of a Rossby wave from a straight wall making some arbitrary

angle p with the z axis.
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. normal
-~

X

~.k—i’ci

If there is a reflected wave, then both incident and reflected waves must have the same
wavenumber component along the wall. This can be seen by considering the case of
1t = 90°. (The computation can be done for any wall angle by choosing coordinates

parallel and perpendicular to the wall.) The incident wave is

1/)2' — Aiei(k;:p+£;y—a;t)

while the reflected wave is

¢r — Arei(kr:v-i—f,-y-—art)

At z = 0 the total streamfunction (t; + 1, ) must be constant so that u = —0v/dy = 0.

Without loss of generality, we can take the constant to be zero. Thus
Aiei(&y——a,‘t) + Arei(fry——art) =0

For this to be true for all time and for all y, then o; =0, = o and {; = ¢, = {.

We can use the sketch of the dispersion relation to visualize the reflection

properties.
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The projection of k; on the wall must equal the projection of k,. This fixes the point
R for the reflected k,. Construct the line CW’ parallel to OW. Then angle ICW’
equals angle W/CR, that is the group velocity (and consequently the energy flux) of
the incident wave is reflected with the same angle to the wall. From the

streamfunction argument, it also follows that

The amplitude of the reflected wave is equal to the amplitude of the incident wave
with a phase shift of 180°. Because the reflection is specular for the group velocity and
energy flux, the components of the energy flux normal to the wall are equal and
opposite. From the dispersion relation, knowing o and ¢, we can solve for k. There are
two roots and only one is appropriate to energy going towards the wall: that gives k;.
The other solution must give k,. The change in k due to reflection is (we are in the

limit o < f for which o2 is neglected compared to f?)

o ﬂZ . f2 1/2
ky — k; = 2[402—@ +gD)

Thus, we see that the long waves are reflected as shorter waves from a western

boundary while short waves are reflected as longer ones from an eastern boundary. To
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see this remarkable property of Rossby waves better, consider the following two
limiting cases.

a) Wave with £ = 0, propagating energy westward and reflected at a western wall

¥

Ke

This will be reflected as a much shorter wave propagating energy eastward.

b) Wave with £ = 0, propagating energy eastward and reflected from an eastern wall.

=44

This will be reflected by the eastern wall as a longer wave propagating energy
westward. Thus, if we generate waves of equal wavelengths in the middle of the ocean
moving east and west, we will get short waves back from the west and long waves back

from the east.

5.13 Western boundary current formation

We now discuss briefly the interpretation of the formation of a western boundary
current based on Rossby wave ideas which was originally put forth by Pedlosky. Each
of the dynamically different steady circulation models of the ocean general circulation
share the common feature of westward intensification despite other noticeable

differences. A simple physical explanation can be found considering time dependent
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dynamics and the character of Rossby waves. As we have seen, energy in the short
waves will be transmitted eastward while energy in the long waves will propagate
westward. Suppose that at some time, energy of varying length scales is input to the
ocean by the wind stress. The small scale components will move to the eastern
boundary where they will be reflected as long wave components, with waves extending
into the gyre interior. On the other side, the long scale components will propagate
energy toward the western boundary where they will be reflected as short scale
motions. The western boundary thus acts as a source of energy in the short scales,

concentrated in a width of the order of the western boundary layer. (See Pedlosky,

1979, pp. 278-281 for more details.)

5.14 Equatorial waves

All of the planetary waves which we have studied are valid on a mid-latitude §-plane
in which the variation in rotation is small compared to the basic rotation, i.e. By < fo.
The dynamics change considerably if we go to the equatorial region where f; — 0.

Then we can approximate f by Sy and ignore f;. The equations of motions become
U= Pyv =—gnz 5 v+ Byu= —gn,

nt+D(ux +Uy) =0
This is called the equatorial §-plane because we have approximated the sphere by a
plane tangent to the equator. If we assume time dependence of e~*** and solve for v as
we did for the mid-latitude planetary waves, we obtain

- 2 92,2
o gD
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This equation does not have constant coefficients, so we cannot assume a plane wave

solution. Instead, we take a plane wave only in the east-west (z) direction
tkz

v = v(y)e

The equation for v becomes

with boundary conditions of

lm v =190
y—++o00

to preserve internal consistency in the equatorial approximation, since we cannot move

to regions where f; becomes large.

The equation for v looks very much like Hermite’s equation
Yee+ (k= €)Y =0 with k=2m+1, m=0,1,2..

We make the change of variables y = £(gD)/*/5Y? and we obtain

(gD)'2 (o* o Bk 2| _
055+[—7—<§5~k—7>~§]v—0

The solutions are
vy, = TP IDI g 131y [ (g DY)
with a dispersion relation of

%(%-H—%):Qm—i—l

The H,, are the Hermite polynomials

Ho=1; Hy =2 ; Hy=—-2+4+4£ ..

S~
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and the solution decays exponentially as y — oo as we required. Thus, various v,,

look like

A Vo A V4
A Vo V3

To explore the possible wave solutions, we make the following transformations
o =wfP(gD) k= AgY?/(gD)!

where w is the dimensionless frequency and ) is the dimensionless east-west

wavenumber. The dispersion relation becomes
W= A - Aw=2m+1

This is a cubic in w. For given wavenumbers m and k, three frequencies are generally
specified. To see their connection with previous work, consider the following limiting

cases.

a) Limit of short waves A — *oo with high frequency w — co. Then \/w is constant

and the dispersion relation is

W= +2m+1
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which asymptotically tends to w = +A. In dimensional form, the two asymptotes
correspond to o = #(gD)'/?k. These are high-frequency, short, shallow water gravity
waves which exist for ¢ — co. They are trapped at the equator and move eastward

and westward.

b) Limit of short waves A — foco with low frequency w — 0. The dispersion relation

becomes

w=-1/A

which, in dimensional form, is
o=-—0/k

This is the Rossby wave limiting case of the dispersion relation for short planetary

waves which are trapped at the equator and move energy eastward.

¢) Limit of long waves A — 0 with low frequency w — 0. The dispersion relation

becomes
—-A
YT am 1
which, in dimensional form, is
_ —(gD)'"*k
T 2m+1

These are Rossby wave modes with long wavelengths which asymptotically approach
the previous Rossby wave limiting case as the wavelength decreases. The above cases
are the limiting forms of the three roots for m > 1 which exist for the general

dispersion relation. The solutions are two oppositely travelling shallow water gravity

waves plus a westward (phase) planetary wave solution.

d) For the case m = 0, we have the Yanai or mixed gravity-Rossby wave solution. We

can write the dispersion relation as

A+w)A=(w-1w)]=0
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Note that w = —X does not solve the original momentum equations, so we must take

A=w-—1/w
which, in dimensional form, is

__ p

(gD g

If o — 0, then o >~ —f3/k and we have the Rossby wave properties dominating. If
o — o0, then o = (¢D)V?k and we have the gravity wave properties dominating.
Thus, the Yanai wave is of gravity type when propagating (phase) eastward and of

planetary type when propagating westward.

e) The case m = —1 is an equatorially trapped Kelvin wave. In fact, the solution to
the original system can be found when v = 0 everywhere or by deriving an equation for

u rather than v and solving it. The equations are
wu = gne ;o Pyu=—gn,

—10n + Du, =0

The physical balance in the momentum equations is geostrophic in the north-south
direction and local acceleration versus pressure gradient in the east-west direction.
These are the balances typical of Kelvin waves. Assuming the plane wave form in z,

i.e. e** we find a solution of the form

n= e—ﬂky2/2ae—iat+ika:

Notice that these waves exist only if k& > 0 to satisfy the requirement of decaying away
from the equator. They are trapped at the equator and move only eastward.

Substituting the solution into the continuity equation gives a dispersion relation of

o = (¢D)"/*k
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which is simply the gravity wave dispersion relation which we also found for Kelvin
waves on an f-plane. In a configuration with north-south boundaries, these eastward

propagating Kelvin waves, trapped at the equator, can clese the circulation as shown

| f

L Equatori=a||y Trapped A

in the following sketch.

r ot
Kelvin Waves \V

Thus, conceptually, Kelvin waves which approach the equator from mid-latitudes

become equatorially trapped Kelvin waves which propagate to the eastern boundary.
There they change again to mid-latitude Kelvin waves propagating northward along

the boundary.

We can summarize all the equatorially trapped wave solutions in the following

dispersion diagram:.

AC
Gravity Waves

Y

Rossby Waves ~g>"




We know that trapping means that a wave decays exponentially away from
some boundary. We have seen that this corresponds to the total reflection of wave rays
as well. Therefore, it is useful to examine these equatorial waves with the ray method
which we discussed earlier in the course. We force a plane wave solution to satisfy the

equation for v

v = Uo(y)e—zat+zkx+t£(y)y

Then the dispersion relation becomes (provided vy varies slowly so that Voyy 15 always

small)
02 k? ﬂk ﬂ?'?/2
gD o gD

Cly) =
Now the ray path is defined by

dy .{:( o? X _é___ ﬁ2y2>1/2

dz ~ k

gDFk? ok gDk?

We can define the angle that the ray makes at the equator (y = 0) by

w0y _(o 8 12
k ~ \gDk2 ok

tan 6y =
Then, we can integrate along the ray path by using

/F——db‘z—ijl—ﬁ :/da: = %sin‘l% = z + const
a* — b2y
to find

(9D)/?k

y = —ﬂ tan @, sin (

This says that rays are sinusoids moving around the equator

ch -+ const)
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They go back and forth between the two latitudes +67, being continuously refracted

by the varying f = By, which models the curvature of the earth.

We can find the trapping latitudes £67 where the rays are totally reflected.

They are simply the maxima of y

(gD)'k
B

If £ — 0, that is the waves squash together propagating only north and south, then the

+0r =+

tan 8,

ray path degenerates into the straight line

—o/f<y<o/B

which says that, since 0 = +f8y = £ f, the waves must remain within their inertial
latitudes. There the rays must turn back toward the equator. If £ # 0, then the
turning latitude moves equatorward, at least when k/o is not important. The inertial
latitudes thus act as a natural waveguide for waves of a given frequency. Poleward of
the inertial latitudes, gravity waves cannot propagate. Equatorward, they may. It is
important to remember that the inertial latitudes are not solid barriers, however. The
wave structure decays exponentially poleward with a scale which is determined by the
particular wave. Furthermore, the decay scale is very different for the barotropic waves

versus their baroclinic counterparts. An analysis of the Hermite functions shows that
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the barotropic wave decays on a scale of the order of the earth’s radius, thus violating

our original assumption of the S-plane. The baroclinic waves decay much faster, on the

order of about 5% of the earth’s radius.
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Chapter 6

Topographic effects

So far, we have largely ignored the effects of bottom topography. It was pointed out in
the last chapter that bottom relief appears in the shallow water vorticity equation in
the same form as the 3 term and, therefore, might be expected to have similar effects.
We also introduced topography as a sudden change in depth and derived edge-wave
and Poincaré-wave solutions. In this chapter, we shall be more systematic and study
several types of waves which rely on variable bottom topography for their existence.
Perhaps more importantly, we shall consider the intimate relation between variable

bottom topography and stratification.

6.1 Topographic Rossby waves

We consider first a problem which was worked out by Rhines (1970) to show the

combined effects of topography and stratification. We start with the linear,
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