Chapter 6
Topographic effects

So far, we have largely ignored the effects of bottom topography. It was pointed out in
the last chapter that bottom relief appears in the shallow water vorticity equation in
the same form as the § term and, therefore, might be expected to have similar effects.
We also introduced topography as a sudden change in depth and derived edge-wave
and Poincaré-wave solutions. In this chapter, we shall be more systematic and study
several types of waves which rely on variable bottom topography for their existence.
Perhaps more importantly, we shall consider the intimate relation between variable

bottom topography and stratification.

6.1 Topographic Rossby waves

We consider first a problem which was worked out by Rhines (1970) to show the

combined effects of topography and stratification. We start with the linear,
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hydrostatic, Boussinesq equations

ut_fv = TP
Po
1
v+ fu = ——p,
Po
1
0 = ——pz——gﬁ
Po Po

pr+wpe, = 0

Up + v, +w, = 0

where p is the perturbation density and po is considered constant except in the density

equation. The perturbation density can be eliminated to obtain

1
U == — ————
poN? P
where N2 = —gpq,/po. Expressions for the velocity can be written as

0? o 1 f
(-a? + f )u — _';(—)pxt - '/');py
0? 5 1 f
(5;2' + o= PR + pRL

These expressions may be combined with continuity to yield

0* 2
Pxx+Pyy+(&'2'+f2) (12\)/,2> J =0
Z1t

If we assume time dependence of e~*°*, then this becomes

pa\:t +pyy + (f2 - 02) (jl\)/;)z =0

Now consider motions confined to a channel along the z axis.

150



The bottom slopes gradually across the channel with bottom slope . The normal
velocity must vanish at the sidewalls and at the bottom, while a rigid lid is assumed at

the surface. The boundary conditions are

v=0 = wp,+ fp.=0 at y=0,L

w=0 = p,=0 at z=0 /

w=av = io(f*—-oc)p,=aNiop,+ fp;) at z=-—-H+ay

To proceed, we scale the variables as follows: z,y by L; z by H; and w = o/ f. We also

assume N is constant. The problem then becomes

(1 —w?)

7 P = 0

Pez + Pyy +

wpy +p; =0 at y=0,1
p,=0 at 2z=0
w(l —wh)p, = 65 (iwp, + p,) at z=—146y

where 6§ = oL/ H is the scaled bottom slope and S = NH/fL is the Burger number
which is a measure of the importance of stratification relative to the spatial scales of

motion. The Burger number appears in virtually all cases involving both topography

— |
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and stratification. Large S means strong stratification and/or large aspect ratio H/L

of the motion. Small S means weak stratification and/or nearly horizontal motions.

For the present case, we consider low frequency motions (w < 1) over a gently
sloping bottom (6§ < 1). This allows us to write the field equation and boundary
conditions as

1
Pre + Dyy + S,‘é’pzz =0
Pz=0 at y=0,1
p-=0 at 2=0

iwp, = 6S%p, at z=—1

The last boundary condition is appropriate because the fractional depth change across
the channel is small. A solution to this problem which is freely propagating in the z
direction is

k

p = ¢*sin(nry) cosh 2

where p? = S%(n?7? + k?) gives the vertical decay scale. Thus, strong stratification

and/or short spatial scales leads to strong bottom trapping.

Az

Y

Sk small

Sk large

/Z/'—‘- _H+OY

The dispersion relation is obtained by applying the bottom boundary condition

. —bkS?
~ ptanh g
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Notice that the waves disappear if the bottom slope vanishes § — 0 indicating the
necessity of variable topography. The phase speed is always directed so that the waves
move with the shallow water on their right in the northern hemisphere. So, for a
bottom which shoals toward the north (+y), the waves propagate westward (—z). This
is like the 8-plane with nearly the same dispersion relation. If the bottom shoals
toward the south (—y), § < 0, then the waves travel eastward (+z). Thus, the effective

north direction is the direction of shoaling.

The limit of weak stratification, S — 0, leads to 4 — 0 and
-6k

= nip? Ny

or in dimensional form
—akf
Hl(nm/L)? + k2]

This is the dispersion relation for Topographic Rossby waves, so named because of the

g =

obvious similarity to planetary Rossby waves. The vertical structure, in this case,

disappears as g — 0.

6.2 Bottom-trapped waves

The waves of the previous section were indeed bottom trapped by strong stratification,
but the discussion was limited to low frequencies over a gently sloping bottom. Here
we relax these restrictions by considering waves along a sloping bottom in a
semi-infinite fluid. The motions are still assumed to be subinertial, o < f, but the
frequency may approach f. This problem is also due to Rhines (1970). The field

equation for pressure is
(f2—a?)

NZ - Pzz = 0

Poz + Pyy +
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where N is constant. The bottom is along z = az where w = au.

The boundary condition along the bottom is
io(f* — o*)p: = aN*(iop: — fpy)

We scale z by R = N/(f* = ¢?)"/? so that 2’ = 2R, and we assume a plane wave in the

y direction, €Y. The problem becomes

DPze — €2p + Doty = 0

1
P = Ra(p, — Ffp) at z' = Raz

Thus, with stratification, Ra is the effective bottom slope. Now

Na _ No/f S

M= o = ot ~ TP

where S = Na/f and w = o/f. Strong stratification appears as an effectively steep
bottom and vice versa. As S — oo, the bottom appears to the motions as a vertical
wall. Similarly, as w — 1, the bottom appears as a vertical wall. The Burger number
here can be thought of in the same way as in the last section except that H/L is
replaced by the bottom slope o because there are no distinct vertical and horizontal

scales.
The angle of the bottom with respect to the horizontal is
0 =tan"! Ra
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This allows a solution to be written as

p= e—icrt+i€yd:ik(a:cos 6+2'sin6)—m (2’ cos §~z sin §)

where the time and y dependences have been reinstated. In this solution, & is the
wavenumber parallel to the bottom, while m is the wavenumber perpendicular to the
bottom. The same solution could have been derived by first rotating the coordinate
system to be aligned with the bottom and then rotating back. Substituting this

solution into the field equation relates k,¢ and m as
m? = k? + 02

This, along with the bottom boundary condition, yields expressions for & and m in

terms of w,? and S, i.e. the dispersion relation;

¢ 52 1z

b L (82wt — W)\
T w 1 —w?4 52

Note that for decay away from the bottom (m > 0), £ and w must have the same sign.

Thus, the waves propagate only in the +y direction, i.e. with shoaling water on their
right just like Topographic Rossby waves. For w < 1, we see that m is always real, i.e.

the motions are always bottom trapped. The waves propagate along the bottom (k is

real) as long as w < S. If w > S, then the waves decay exponentially along the bottom.

This means that if S > 1, then these waves always propagate because w < 1. They
become more highly bottom trapped as S gets large. As S — 0, the waves are
evanescent and less bottom trapped. As w — 0, both k£ and m become large indicating

short waves trapped close to the bottom.

These properties suggest some interesting possibilities. Suppose a wave with

frequency w < S propagates along the bottom and encounters a change in bottom
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slope. Without solving for the details of the solution near the corner, we know that the
wave will continue to propagate as long as the new bottom slope is such that w < S. If
w > 5 on the new slope, then the wave must be reflected. Thus, we can imagine waves

being trapped on the bottom between two gently sloping regions.

/\._/ (_Q>S
(A.)<S UJ>S

w<S w<S /

This type of behavior may occur over the continental slope between the gently sloping

w<S

shelf and the gently sloping deep ocean. Of course, technically the waves would have to
be sufficiently bottom trapped so that they would not feel the surface which was
neglected in the problem. However, the surface should not fundamentally alter the

wave behavior., -

6.3 Continental shelf waves

Another type of wave motion, analogous to the topographic Rossby waves but trapped
at the coast like a Kelvin wave, can occur over the continental shelf. Consider a
continental shelf which borders a flat-bottom deep ocean with depth H. This problem
was first considered by Buchwald and Adams (1968).
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Xx=L
The z axis points offshore while the y axis is alongshore. The shelf-slope region has
width L. We start with the shallow water equations over variable topography. We

ignore stratification for now and assume that the flow is nondivergent.

U= fo=—gn. ; v+ fu=—gn,

(uD); + (vD), =0
The continuity equation allows us to define a transport streamfunction as o
uD =1, ; vD=—, |

Substituting into the momentum equations and eliminating the sea-surface

displacement yields

(5, (52 +1(8), - (3).5] =

If the topography varies only across the shelf, i.e. D(z), then this becomes

fDq
D

Yoot By — 22 ) + 22y =0
D t

We look for plane waves propagating along the shelf, e=*7*+*¥ and assume a

convenient depth profile of
D = Dge** 0<z<L
= D()G%L z> L
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Over the shelf, the field equation reduces to
2bf¢
Ym = 2y (—’f—+e2) p=0
o
while in the deep ocean it becomes

Yog ~ Ezd) =0

The boundary conditions are that the velocity normal to the coast must vanish and

that 1 should vanish far offshore:
u=0 = YP=0 at z=0

p—0 at z— o0

The solution over the shelf can be written
P = A~ D sin kx

Substituting this into the ¢ equation yields the dispersion relation

_ —2bf¢
T TRt

which looks almost identical to the Rossby wave dispersion relation showing the close
correspondence of these waves to both planetary Rossby waves and topographic

Rossby waves.

L}
The solution in the deep sea is (since £ < 0)
’l,b — Bel(z—L)

The problem is closed by matching the shelf solution to the deep-sea solution. This

requires that ¢ and %, be continuous at 2 = L which leads to

—k
tan kL == ‘_T:Fb
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This relation is satisfied at an infinite set of discrete values of k for given £ and b. For

large k, the roots approach (n + 1)r /L.

These solutions are called continental shelf waves. They are very much like planetary
Rossby waves and equatorial Rossby waves. Their phases all travel with the coast on
their right in the northern hemisphere. The dispersion diagram looks like

c
I

-/

Each mode is constrained to be below some maximum frequency where do/9¢ = 0.
This occurs at

glgmaa: = _(kz + b2)1/2

At the maximum frequency, the group velocity is zero meaning that energy does not
propagate even though phases still do. For waves that are longer than this wavelength
(smaller £), the wave energy propagates with the phase. For very long waves £ — 0, the

dispersion relation becomes
—2bft
o=
k2 + 12

and the waves are nondispersive. This will be used to advantage later.
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Waves that are shorter than those at the frequency maxima have group velocity
opposite to the phase velocity. This means that the phases propagate forward through
the group, but the group moves in the direction with the coast on the left in the
northern hemisphere. This is essentially identical to the result for planetary Rossby
waves in which phase always propagates to the west, but the group velocity may be
westward or eastward depending on the wavelength of the Rossby wave. One difference
is that continental shelf waves occur at discrete frequencies whereas Rossby waves form
a continuum. Of course, Rossby waves would be discretized if they were constrained to
a channel of some sort. The coast acts as this sort of constraint for continental shelf
waves. Notice that the frequency for each mode approaches zero as the waves become

very short, i.e. ¢ — 0 as £ — oo.

We have made a special choice for the bottom topography which made the
problem rather simple by giving constant coefficients to the equation for ¥. It can be
shown that the present results are but a special case of the results for the more general

divergent equations with arbitrary cross-shelf topography. The equations are
w— fv=—gn. ; v+ fu= gy

N+ (uD)s + (vD), =0

If we assume that the topography does not vary along the shelf, i.e. 0D /0y =0, and

look for plane waves of the form e+  then the problem becomes

{ 2 _ 2
(Dnz)e — Knp =0 K:f—Dx+€2D+f o
g g
The boundary conditions are
14
uD=0 = D(Tla:—i—n)= at =20
o

n—0 as z—= o0
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which represent no flow through the coast and coastal trapping. Huthnance (1975) has
shown that, provided D increases monotonically offshore, this eigenvalue problem
yields an infinite discrete set of continental shelf waves which have the same general
properties as those for the special case above. Further, exactly one Kelvin wave exists
which can propagate at both sub- and super-inertial frequencies. Also, there is an
infinite discrete set of edge waves, all at super-inertial frequencies, which can propagate
in either direction. They occur outside a continuum of Poincaré waves. The complete

dispersion diagram looks like

Edge Waves

Shelf Waves

P 4

Notice the obvious similarity to the dispersion diagram for equatorial waves. In fact,
most of the waves in the equatorial dispersion diagram have counterparts along the
coast, except that there is no Yanai wave along a coast. Thus, to many researchers, the
coastal region is essentially the same as the equator, but turned sideways. There is
another important distinction, however, which we shall discuss next. That is the role
of stratification. Our results from the equator were easily generalizable to a stratified
ocean because the bottom was flat, so we could make use of the expansion in vertical
modes and simply use a different equivalent depth to study higher modes. In contrast,
waves trapped at the coast depend on the variations in topography to exist. This,
along with the intimate relationship between topography and stratification which we

-
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discussed in the previous two sections, suggests that the inclusion of stratification may

not be trivial for continental shelf waves.

6.4 Coastal-trapped waves

In order to add stratification to the continental shelf wave problem, we must return to
the linear, hydrostatic, Boussinesq equations with which we started the chapter. We

consider a coastline oriented along the y axis with = pointing offshore.

z2=0r¢

We assume that the topography varies only across the shelf and look for free waves
propagating in y, i.e. e %, The equation and boundary conditions in terms of

pressure are
2 2

o
sz—€2P+szz=0
1
(fP=o®)p, + N*D,(p, — —]—C-p) =0 at z=-D(z)
o
p.=0 at 2=0

p—0 as z— o0

We have taken N to be constant and applied a rigid lid. However, all of the following
analysis can be generalized to the case of variable N and a free surface (see Huthnance,

1978).
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We scale the variables as follows: z,y by L; z, D by H;andw=0c/f. The

equations become

1 —w?

Sz

Pzz — €2p + Pzz = 0
(1 —w®)p, + 52D, (p, — ﬁp) =0 at z=-D(z)
w
p,=0 at z=0

p—0 as z— o0

where S = NH/fL as before. For general D(z), this eigenvalue problem must be
solved numerically. In fact, only a couple of special cases of D are known which give
analytical solutions. And these are rather unusual in their properties, so we will not
study them. However, a number of important features of the free-wave solutions can be

determined without solving the complete problem. These are all due to Huthnance

(1978).

1. There is a singly infinite discrete set of wave modes for any choice of topography

and stratification. These are called coastal-trapped waves.

2. Increased stratification, all else being equal, increases the wave frequency and

makes the wave structure more horizontal.

3. The dispersion curves for all modes approach the same frequency as the

wavelength decreases. This frequency is given by lim,,_, w = S maz[D,].

4. The short waves (large ¢) are identical to the bottom-trapped waves found by
Rhines (1970).

These results give the following dispersion diagram for the general case
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. ?w
|
Vo=

™~ Kelvin Wave
(if we had a free surface)

The second and third results say that the dispersion curves will go higher and higher
with increasing stratification, and if S maz[D,] > 1 then all dispersion curves go to the

inertial {requency, w = 1. In dimensional form, this is (N/f) maz[D,] where D, is the

actual (not scaled) bottom slope.

Sincreases (
| =4

This has profound effects on the nature of the waves. They are no longer restricted to

be below a maximum frequency. Now they may occur at any subinertial frequency, but
they are limited in length by the wavenumber at which the dispersion curve reaches f.

That is, each mode must be longer than a certain length to be a free wave. Consider

the change that this makes on a scattering problem.
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Deep

Deep
Ocean

Ocean

Pr P;

If the stratification is weak, then waves may exist which propagate energy in either
direction because the group velocity changes sign. Thus, energy may be reflected as
well as transmitted. If the stratification is strong so that all of the dispersion curves go
to f, then the energy can only propagate in one direction. No energy can be reflected
from the topography, no matter how tortuous the topographic variations. It turns out
that in the ocean, ND,/f is often order 1, especially at low latitudes where f is small.
Typically, at mid-latitudes, N/f is order 10 to 100, while D, is order 10~3 over the
shelf but more like 0.02-0.04 over the continental slope. Remember that N/ f times the

maximum of D, is the important value.

Before leaving this problem it is useful to consider two limiting cases.

Case A: § — 0. If S is small, we can expand the solution in powers of 52 as follows
p(z,2) = po(z) + S7pi(, 2) + O(S*)
Substituting into the full equations produces
O(1):  po.=0

with po, = 0 at both z =0 and z = —D. This means that Poz = 0 everywhere, i.e. the

solution pq is vertically uniform. At the next order, we have
0(52) : Pozz — €2p0 + (1___ w2)p1zz =0
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14
(1 - wg)plz + Dx(pOa: - :‘;pO) =0 at z=-D
P, =0 at z=0

The field equation can be integrated in z, since pq is independent of z, and combined

with the surface and bottom boundary conditions to yield
¢ 2
(Dpon)e = (= Da + £)po = 0

which is precisely the same equation that was derived for continental shelf waves, but
now with a rigid lid. Thus, as we would expect, the stratified problem reduces to the

barotropic problem in the limit of weak stratification.

Case B: S — co. Based on our previous experience with stratification effects, we

expect strong stratification to lead to strong bottom-trapping, i.e. short vertical scales.

Basically this occurs because the stratification inhibits vertical motions. Therefore, we

make a change of variables to
f=2-D"(-z) ; n=5:

where D! is the inverse of the depth function. The new variable ¢ represents the

horizontal distance from the bottom. The equations become, for large S,
pec + (1 = w*)pyy — p =0

14
Dz(p5-—c—u-p):0 at ¢=0
=0 at n=0

A solution which satisfies the first two and the requirement that p, = 0 on the deep

ocean bottom at z = —1 is

14
p = et cos[;(n + 5)]

-
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Remember that ¢ < 0 in the present formulation, so the solution does decay offshore.

The surface boundary condition provides the dispersion relation of

St
w=—
nmw

which is precisely the same dispersion relation as for baroclinic Kelvin waves with

constant V.

Thus, each coastal-trapped wave mode behaves like a continental shelf wave
when the stratification is weak, and then passes smoothly to a baroclinic Kelvin wave

when the stratification is strong. \O

________________________ __...f

— Baroclinic

Coastal-Trapped Wave Kelvin Wave

Continental Shelf Wave

! =/

Consider a free wave travelling north along an eastern ocean boundary with constant
N and uniform D(z). At low latitudes, the wave looks like a baroclinic Kelvin wave
because S is large. However, as the wave moves north, S decreases and the wave looks
more and more like a continental shelf wave. Of course, we have neglected the 8 effect
which would change the entire problem. So, we cannot take our thought experiment

too far.

6.5 Wind-forced, long waves

We have not discussed how shelf or coastal-trapped waves might be generated. Over
the past 15 years or so, a very elegant theory has evolved which suggests that the

alongshelf component of the surface wind stress is.an important driving mechanism.
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This theory has proven quite successful in predicting shelf currents, so we will examine
the basics of it. We will consider only the simplest form of the theory by Gill and
Schumann (1974), but you should keep in mind that it has been generalized to a much

more realistic setting.

We consider a barotropic (homogeneous) ocean as we did for the continental

shelf waves.
12/' y

= X

In addition, we assume that the motions occur at frequencies much less than the
inertial frequency, i.e. o < f, and that the alongshelf variations occur on a much larger
scale than the cross-shelf motions, i.e. /0y <« 8/dz. These assumptions constitute
the long-wave approzimation. In terms of the free-wave dispersion diagram, we are

assuming that the waves are at small o and small £. The equations of motion are

~fv = —gns

TY
ve+ fu = ~gny+5

(uD). + (D), = 0

We have also assumed a rigid lid, and imposed an alongshelf wind stress 7¥. Notice
that the long-wave approximation has rendered the alongshelf flow to be in geostrophic

balance. This turns out to be a good approximation over most continental shelves.

We define a streamfunction as

uD =1, ; vD = -,

i

168




which results in an equation for v of (with D, = 0)

(&) + fD”¢y = 21_{7-&/

D D ™Y D2
The boundary conditions are that 1 = 0 at z = 0, i.e. no flow through the coast, and
e =0 at = L which comes from matching ¢, at z = L. The z and y length scales

are both order £7! in the deep ocean, so 1), ~ £~ 0 at z = [.

To solve this problem, we first look at free-wave solutions, i.e. 7¥ = (. Then we

separate variables by writing

¢($’y7t) = ¢(y7t)F(‘T)

The field equation becomes

¢ (fﬁ) Ry

for which the separation works only if
1
Z¢t - ¢y =0

F; fDz .,
<5>x * cDZF =0

where c is a separation constant. The boundary conditions become F = 0 at z = 0 and

F,=0atz=L.

‘The problem for F is a Sturm-Liouville eigenvalue problem and it can be shown
that the eigenfunctions, F,, satisfy the orthogonality relation

LD
__an md = Onm
| e F,dr =6

where 6,,, is the Kronecker delta. Each F,, corresponds to the cross-shelf structure of a

free-wave mode. The problem for ¢ is just a first-order wave equation with the solution

¢ = oy + ct)
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where ¢q is any function. Thus, we see that each wave mode need not be sinusoidal in
shape and that the eigenvalue c is simply the phase speed of the free wave. The waves
move in the —y direction as expected and they are nondispersive (as shown for the

small £ limit of the continental shelf wave problem).

These results allow the forced problem to be solved by expanding % in the set of

free-wave modes
1/)(‘7:’7 7t) = Z¢n(ya t)Fn(m)

Substitutiing this into the field equation and using the orthogonality condition of the

free modes yields
1
_¢nt - ¢ny = "“bnTy
c‘n

where
1 (LD
n = — —F, dz
fJo D?
are the wind-coupling coefficients which tell how well the wind stress drives each mode.
The solution to this equation is

Bulwst) = 9ul0, 8+ yfen) + b [ (6,04 L5 de

Cn

This solution simply says that ¢(y,t) is given by the ¢ that propagated into the
domain at the origin of integration plus the integrated effect of the wind generating
free waves along the coast. Thus, the entire wind-forced problem has boiled down to a
rather simple integral of the wind stress displaced in time by the period needed for the

free wave to propagate from its generation location ¢ to the prediction site y.

The overall solution procedure is as follows. The free-wave phase speeds and
cross-shelf structures are computed from the eigenvalue problem. These are used to

compute the b,. Then the first-order wave equation is integrated for each mode and

——

170



the streamfunction is reconstructed as the appropriate summation of modes. Crucial
to this approach is the long-wave approximation which renders the waves nondispersive
allowing the separation of variables. This approach does not work for dispersive waves.
This theory has been extended to a remarkable degree of sophistication in which
alongshelf variations in stratification, bottom topography and bottom friction have

been incorporated.
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