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Abstract

A mechanism is described for the net horizontal transport of sinking

plankton or sediment by oscillatory tidal flows. The mean motion of the

plankton or particles is driven by the modulation of vertical mixing between

flood and ebb. Cold water forced over warm water on the flood tide creates

enhanced vertical mixing, and resuspension of sinking particles higher into the

water column. On ebb, the converse occurs, and sinking particles are lower in

the water column. Since friction retards the tidal flow near the bottom, this

leads to a net horizontal transport toward the less-dense water. Because

less-dense water tends to be shallower, this will tend to move sinking plankton

and sediment toward the crest of banks, toward the coast, and up embayments,

even in the absence of any mean currents. A one-dimensional Eulerian model of

this horizontal transport is developed, and is compared to particle motion in a

fully non-linear two-dimensional model with an advanced turbulence closure

scheme. The Eulerian model can, in most circumstances, predict the net

horizontal motion of the particles as a function of their sinking speed and

observable oceanographic properties. The mean horizontal speed of sinking

particles is greatest when the sinking speed of the particles is about

one-seventieth of the tidal velocities, or equivalently, about one-third of the

mean turbulent velocity scale u∗. This horizontal transport of plankton and

particles requires no behavior more complicated than simple sinking to achieve

net horizontal speeds of several km d−1 for realistic planktonic sinking speeds.

It is possible that such a mechanism is a factor in larval recruitment and

retention in coastal regions, for example, scallop larvae on Georges Bank.
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Introduction

Most benthic marine invertebrates have a planktonic larval stage which

facilitates dispersal and gene flow between sessile or sedentary adult

populations [Levin and Bridges, 1995; McConaugh, 1992]. To a large extent

these larvae are at the mercy of the prevailing currents, often leading to a

strong decoupling between adult fecundity and larval recruitment. Planktonic

larvae are not completely passive, however, and even weak swimming behaviors

can lead to significant horizontal transports when they interact with certain

physical forcings. One striking example is the interaction of vertical migration

with tidal flows leading to net transport (“selective tidal stream transport”;

Wood and Hargis [1971]).

While most descriptions of physical-biological interactions leading to

transport have invoked swimming behaviors of the plankton, there are some

transport mechanisms that require nothing more complicated than plankton

sinking. De Wolf [1973] described a mechanism allowing barnacle larvae to

selectively move up an estuary: the larvae sank to the bottom on the ebb tide,

but were mixed into the water column on the flood. The stronger currents on

the flood tide were thought to cause this stronger vertical mixing, leading to

enhanced resuspension of the sinking larvae. The net result was transport of

these larvae up the estuary.

Georges Bank, a shallow and highly productive bank in the Gulf of Maine

(figure 1), is characterized by mean cross-isobath currents that are only a small

fraction of the strong tides sweeping the bank [Backus and Bourne, 1987]. If

planktonic larvae spawned on the bank are to successfully recruit to the bank,

they must remain on the bank despite the occasional storms which tend to

remove waters from the bank [Gawarkiewicz, 1993; Lewis et al., 1994]. Many

larvae, e.g. older scallop larvae, sink at speeds of order 1 mm s−1, [Chia et al.,

1984]. To examine the impact of larval sinking on their retention on the bank,

sinking and non-sinking particles were placed in the bottom boundary layer of a

two dimensional (x,z) primitive equation model of Georges Bank developed and
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extensively compared to observations by Chen and Beardsley [1998]. The

particles which sank at 1 mm s−1 moved toward the crest of the bank much

more rapidly than neutrally buoyant particles (figure 2). To the extent these

particles are representative of scallop larvae, they indicate that sinking can help

larvae remain on the bank, and recruit to the adult populations on the flanks of

the bank.

The observed transport of sinking particle in the 2D model of Georges Bank

motivated the study presented below. We begin by developing a simple,

Eulerian, process-oriented model to diagnose the relevant dynamics. The source

of the cross-isobath motions of sinking particles in a tidal flow is then discussed,

and the speed of the motion is related to quantities observable in the field: the

strength of the tides, the hydrography of the region, and the sinking speed of

the particles. These theoretical predictions of the cross-isobath motions of the

sinking particles are then compared to the motions of sinking particles in the

two dimensional primitive equation model of Georges Bank (Chen and

Beardsley [1998]; hereafter CB98), and the successes and failures of both the

theory and the primitive equation numerical model identified. Paticular

attention is paid to where the Eulerian model is sufficient, and to where a more

complex Lagrangian model must be used to predict the horizontal motions of

sinking particles. Finally, the biological ramifications of these cross-isobath

motions are discussed.

The Asymmetric Mixing Transport Mechanism

Tidal currents near the bottom are sheared vertically: horizontal velocities

are stronger farther away from the bottom because of bottom friction. In a

region of horizontal density gradient along the bottom, one phase of the tide

(usually the flood) will drive dense water over less-dense water (figure 3). This

unstable density profile will convectively mix, causing enhanced turbulence and

vertical mixing during this phase of the tide. On the opposite tidal phase (the
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ebb), the vertical density gradient is enhanced, suppressing vertical mixing.

Sinking particles in such a flow will tend to be suspended higher in the water

column during the flood than the ebb tide. This difference in distance from the

bottom, combined with the vertical shear of the horizontal tidal currents, leads

to a net transport in the direction of the less-dense water. Thus, even if the

currents have no mean over a tidal cycle, the particles have a mean motion

toward the less-dense water caused by the asymmetry in vertical mixing over a

tidal cycle. We term this mechanism “Asymmetric Mixing Transport”.

Figure 4 illustrates this mechanism for an arbitrary but representative point

on the south flank of Georges Bank in the model of CB98 (marked “A” in figure

1). The cross-bank currents are nearly perfectly symmetric between flood and

ebb, but the vertical mixing is stronger, and thus the average height of the

particles greater, when the flow is onto the bank. This drives an on-bank

motion at that point of 3.5mm s−1 for particles that sink at 0.5mm s−1, and an

even greater 5.5mm s−1 (≈ 0.5km d−1) for particles that sink at 2mm s−1. If

there is no sinking, the net cross-bank motion of plankton in the bottom

boundary layer is only 1.2mm s−1. Everywhere in the model the net motion of

sinking particles is onto the bank, because the least dense water is on the crest

of the bank, and can reach speeds of several centimeters per second on the

flanks of the bank (figures 1 and 2). (The mean net motion and height of a

particle was found by tracking several hundred thousand particles in the bottom

boundary layer of the model of CB98 over a tidal cycle. The Lagrangian

particle tracking code in CB98 was modified to include sinking and the effects

of turbulence on the particles, using the algorithm described by Visser [1997].

The vertical diffusivity of temperature, computed from the Mellor-Yamada

turbulence closure scheme CB98, was used as a proxy for turbulence.)

In order to understand how the mean cross-isobath particle velocity 〈ueff〉
depends on the strength of the tides, the sinking speed of the plankton or

sediment, the mixing asymmetry, etc., it is convenient to develop a simple

model of the mean particle motion. The model chosen is quasi-steady, i.e. it
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assumes that the vertical mixing, horizontal velocities and particle

concentrations adjust to the tidal forcing faster than the tidal period of about

12.42 hours. These approximate solutions can be used to estimate the mean

cross-isobath speed of particles, 〈ueff〉.
These approximations are appropriate when the turbulent eddies in the

bottom boundary layer mix water and momentum across the bottom boundary

layer in much less than a tidal period. This is true when u∗, the velocity scale of

the eddies in the bottom boundary layer, is large enough, and hbbl, the thickness

of the bottom boundary layer, is small enough, so that hbbl/u
∗ is much less than

a tidal period. u∗ is related to the currents in the weakly stratified regions near

the bottom by

current speed =
u∗

κ
log

(
z + z0

z0

)
(1)

where κ is von Karman’s constant (0.4), and z0 is about one-tenth of the length

scale of bottom roughness. (Derivations of Eq. 1 and discussions of z0 are found

in basic fluid dynamics books, e.g. Kundu [1990] or Stull [1988], and

discussions of the determination of z0 from data can be found in e.g.

Trowbridge and Lentz [1998].) Typical values of z0 are about 10−3 m, giving a

u∗ of about one twentieth the horizontal currents 10 meters away from the

bottom [Werner, 1999]. Georges Bank bottom boundary layers are 10’s of

meters thick (figure 1), and the tidal currents are about 0.5 m s−1, implying an

adjustment time scale of an hour or so, which is fast compared to the tides

[Backus and Bourne, 1987] (this also agrees well with observations of mixing

time scales on the bank made by Horne et al. [1996]).

Neglecting rotation (u∗/(f ± ωM2) < hbbl) and assuming that the boundary

layer stratification is weak, the cross-shelf tidal velocity will then be

approximately

u =
u∗ave

κ
log

(
z + z0

z0

)
(γ cos (ωM2t) + γM4 cos (2ωM2t)) (2)

where u∗ave is the average turbulent velocity scale over a tidal period, ωM2 is the

M2 tidal frequency, and γ is the ratio of the peak cross-isobath velocity of a
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tidal constituent to the average current magnitude. For a purely M2 tide in a

channel, γ = 1.6, or one over the average value of the absolute value of a cosine.

For an ocean with an M2 rotary tide where the cross- and along-bank speeds

are equal, γ = 1. For Georges Bank, where the along-bank tides are about half

the cross-bank tides, γ ≈ 1.2. The higher tidal frequency, cos (2ωM2t), results

primarily from non-linear advection and friction working on the M2 tides. It is

negligible over most of Georges Bank [Backus and Bourne, 1987], but can be

important in estuaries [Jay and Musiak, 1994]. The relative phases of the two

components will be seen below to be unimportant.

This simple model reproduces the vertical structure of the cross-bank flows

in the bottom boundary layer over Georges Bank seen both in observations

[Werner, 1999] and in full numerical models (figure 5), particularly near the

bottom where the assumptions that lead to a log-layer are most valid and the

shear is strongest [Stull, 1988]. Since the mean particle motion is caused by

turbulence resuspending particles in and out of this near-bottom region of high

shear, its representation is particularly important.

Turbulence, which drives the resuspension of the sinking or

downward-swimming particles, is modeled with a cubic mixing profile [Signell et

al., 1990]:

A = A0 + κu∗ave

(
(z − hbbl)2

hbbl
+

(z − hbbl)3

h2
bbl

)

×
[
1 + δA

2z

hbbl
cos (ωM2t) + δAM4

2z

hbbl
cos (2ωM2t)

]
(3)

where hbbl is the thickness of the bottom boundary layer, A0 is a background

mixing level whose physical significance is given below, δAM4 parameterizes the

increased turbulence when the tides are running, and δA is the horizontal

density gradient-induced mixing asymmetry in the middle of the bottom

boundary layer. The cubic profile is chosen so the slope of the mixing profile

near the bottom boundary is u∗κ, in agreement with Prandtl’s law of the wall,

and so the mixing goes smoothly to zero at the top of the bottom boundary

layer. The mixing asymmetry increases linearly away from the bottom as a
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crude model of the increasing magnitude of the stratification away from the

bottom, where, because diffusivity does not go exactly to zero, the stratification

must be zero so there is no diffusive flux of density through the bottom. This

vertical structure for the mixing asymmetry can be shown to be appropriate for

the bottom two thirds of the boundary layer in the limit of small Richardson

number. δA can be estimated from observations of the temporal variations in

the gradient Richardson number in the middle of the bottom boundary layer,

using a rather ad hoc turbulence closure in which δA is about five times the

maximum Richardson number in the middle of the bottom boundary layer

[Geyer, 1995; Villaret and Trowbridge, 1991]. Since the Richardson number is

difficult to measure in the field, it will often be easier to use the observed tidal

currents and horizontal and vertical density gradients as forcing for a

one-dimensional vertical model with a “realistic” turbulence closure, as done by

Nunes Vas and Simpson [1994], and then to recover δA from the model.

Figure 6 compares Eq. 3 with the model of CB98 at station A of figure 1. The

cubic mixing profile captures the slope of mixing strength near the bottom

where the current shears are greatest and realism most important, but

somewhat overestimates the mixing in the interior.

δAM4 reflects the increased vertical mixing when the tidal currents are

greatest at full flood and ebb. Since the vertical turbulent mixing scales linearly

with current speed (if δA is small), δAM4 should scale as the M4 amplitude of

the tidal speed (not velocity). This will range from 0, when the tidal ellipse is a

circle and thus the speed never varies, to 0.5 for a rectilinear tidal current. On

Georges Bank, δAM4 ≈ 0.25. It has been assumed above that this modulation

decreases near the bottom, in order to reduce the algebraic complexity of the

following solution. While this assumption is not accurate, it allows the relative

importance of overtides to be judged. Relaxing this assumption does not

quantitatively change the result.

Given the diffusivity, Eq. 3, and a steady-state advection-diffusion equation

for the vertical distribution of particles sinking or swimming downward at a

9



speed w0,

w0
∂c

∂z
=

∂

∂z
A
∂c

∂z
(4a)

w0c = A
∂A

∂z
@ z = 0, hbbl, (4b)

the particle concentration c(z) is

c(z) = c0 × exp
[
h3
bblw0

∑

λ

(
− 8zA0h

5
bbl∆κu

∗
aveλ

2−

2z + 4u∗aveκ∆A0h
6
bblλ

2 − 8A0h
3
bblλ+ hbbl

)]
(5a)

where

∆ = 1 + δA cos(ωM2t) + δAM4 cos(2ωM2t), (5b)

λ are the roots of

0 = (16A2
0h

1
bbl0∆2κ2u∗2ave+256A3

0h
9
bbl∆κu

∗
ave)λ

4+8u∗aveκ∆A0h
5
bblλ

2+1 (5c)

and c0 is chosen so the integral of Eq. 5 over the water column is one and

dimensionless. This formula, the Rouse profile, and many variations on it, are

discussed in much greater detail in, e.g., Fredsoe and Deigaard [1992]. The

Rouse profile is controlled by one non-dimensional number, the Rouse number

R = −w0/(κu
∗
ave), whose role can be understood in its limits (shown in figure 7

for ∆ = 1). When the sinking speed w0 is large or the turbulent velocity u∗ is

small, R is greater than one and the particles are concentrated near the

bottom. As turbulence increases or w0 decreases, R becomes less than one and

the particles are spread throughout the water column. The average height of a

particle approaches half the boundary layer thickness as R becomes less than

one, and A0/w0 as R becomes greater than one (figure 8). As the tidal currents

go to zero, the particles will remain suspended a distance zr = A0/w0 off the

bottom. This is an artifice intended to parameterize the effects of the initial

resuspention of particles – as u∗κ becomes somewhat less than w0, real particles
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will tend to settle out onto the bottom and only be transported by bed-load

processes [Fredsoe and Deigaard [1992], §7.4, Emerson [1991]]. In the ocean, as

κu∗ exceeds a value of ≈ w0 the particles are initially resuspended some height

zr above the bottom – perhaps 2 particle widths over a smooth bottom, or

several ripple heights over a sandy bottom with sand ripples [Fredsoe and

Deigaard, 1992]. In that case, zr is specified and A0 is set to w0zr. If there is a

strong surface-wave field the particles can be continuously resuspended near the

bottom, even in the absance of a mean flow, and A0 = 0.0752Awωhr where Aw

is the wave orbital excursion near the bottom, ω is the frequency of the surface

wave field, and hr is approximately the bottom ripple height [Williams et al.,

1999]. The resuspension height zr is not allowed to vary with the phase of the

tide because the resuspension is driven by very near-bottom mechanically forced

turbulence, which will not feel the effects of stratification which only exists

higher in the water column ( e.g. [Stull, 1988]).

Given the horizontal water velocity and the vertical profile of particle

concentration, the depth- and tidal-mean cross-bank velocity of the particles

〈ueff〉 can be calculated:

〈ueff〉 =
ωM2

2π

∫ 2πω−1
M2

0

dt

(∫ hbbl

0

uc dz

)
. (6)

The quasi-steady models for the cross-bank velocity Eq. 2, and the vertical

distributions of particles Eq. 5 can then be substituted into Eq. 6 to obtain an

estimate of 〈ueff〉:

〈ueff〉 =
ωM2

2π

∫ 2πω−1
M2

0

dt

(
γu∗ave

κ
Γ

)
(7a)

Γ =

∫ hbbl

0

dz

{
log

(
z + z0

z

)
c(z,∆)

}
(7b)

(∆ is as in Eq. 5). This expression for 〈ueff〉 is analytically intractable because

the integral for Γ is difficult to solve in closed form. However, if δA is small
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compared to one, Γ can be written as the first two terms of a Taylor series

Γ = Γ0 + δA cos(ωM2t)U + δAM4 cos(2ωM2t)U (8)

where Γ0 is Eq. (7b) evaluated with ∆ = 1 and U is

U =
∂Γ

∂∆

∣∣∣∣
∆=1

. (9)

Eq. 7 then becomes, for small δA,

〈ueff〉 =
1

2

u∗ave

κ
U (γδA + γM4δAM4) (10)

(The error in this approximation remains less than 50% if δA remains less than

0.6).

U is still not solvable in closed form, but it depends only on a small number

of parameters: u∗, the turbulence velocity scale; w0, the particle sinking speed;

hbbl, the bottom boundary layer thickness; z0, the bottom roughness; and zr, the

resuspension height of the particles (defined as A0w
−1
0 above). Furthermore, as

can be verified by the direct numerical evaluation of Eq. 7b, U does not depend

on z0 when z0/zr < 1. This leaves four parameters in two units, length and

time, so U must depend on only two dimensionless parameters [Kundu, 1990,

chapter 8]. Given the discussion above, the Rouse number R = −w0/(κu
∗) is

chosen for one of the parameters. The other parameter is then zr/hbbl, the ratio

of the initial particle resuspension height to the thickness of the bottom

boundary layer. U is shown in figure 9 as a function of these two parameters.

From Eq. 10, it can be seen that the overtides can be neglected if γδA is

much greater than γM4δAM4, as is true on Georges Bank. Overtides will thus

not be discussed below.
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How Eq. 10 is Used: Application to Georges

Bank

Eq. 10 allows the mean cross-isobath motion to be determined as a function

of quantities which can be observed in the field: the strength of the tides u∗ave

and γ, the mixing asymmetry δA and δAM4, the thickness of the bottom

boundary layer hbbl, and the particle resuspension height zr. An example is

given below for a numerical model of Georges Bank, all of whose flow fields have

been tuned to reproduce those on the actual bank. (The use of the numerical

model as an intermediate step may seem odd here, but it will be useful later in

quantifying the errors in the simple model presented above.)

The net horizontal velocity of sinking particles, 〈ueff〉, can be estimated for

station A of figure 1 for any sinking speed w0 by taking δA = 0.24, u∗ave = 0.02

m s−1, γ = 1.2 and zr/hbbl = 0.02 from the model of CB98, and estimating U
from figure 9 (zr in a numerical model like that used in CB98 is the vertical

extent of the bottom-most grid cell, since all particles near the bottom

experience horizontal currents appropriate to that height. Here, zr ≈ 1 m.). The

curve of U is then multiplied by δA, u∗, and γ, and divided by 2 and κ = 0.4, to

produce the estimate of 〈ueff〉 in figure 10. For this location on Georges Bank,

maximal values of 〈ueff〉 are about 0.4 cm s−1, or about a third of a kilometer a

day. 〈ueff〉 is largest when the downward speed of the plankton or particle is

about 0.7κu∗ and R ≈ 0.7, in this case about 0.7 cm s−1. This maximum of

〈ueff〉 occurs because when R ≈ 1, small changes in the turbulence lead to large

changes in the average height of a particle off the bottom (figure 8). It is this

change in the average height of the particles between flood and ebb which lifts

the particles in and out of the slower flows near the bottom, causing 〈ueff〉. As

seen in figure 7, when R � 1, the particles are all resting on the bottom,

regardless of any minor changes in the mixing, and when R � 1 the particles

are evenly spread through the bottom boundary layer, again unaffected by any

minor changes in the strength of the turbulent mixing. Thus in both these
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limits 〈ueff〉 is small.

Eq. 10 can also be applied to the entire bank, and used to explain the

structure of 〈ueff〉 on Georges Bank. 〈ueff〉 in the model of CB98, for particles

sinking at 0.5 and 2× 10−3 m s−1, is always toward the shallowest portion of the

bank, and is larger where the bathymetry is steepest, but becomes nearly zero

at the shallowest, flattest, portion of the bank (figure 11). 〈ueff〉, according to

Equation 10, is linearly proportional to u∗, δA, and U . R in the model varies

little across the bank, from about 0.4 to 0.2, except on the steepest portions of

the bank, so changes in R do not dominate the variation of 〈ueff〉 across the

bank (figure 12). u∗, which is proportional to R−1, is at its greatest in the

shallowest portion of the bank where 〈ueff〉 is least, so it too cannot explain the

variation in 〈ueff〉. δA, however, is greatest on the flanks and smallest over the

crest of the bank (figure 12), and explains the variation in 〈ueff〉 well. Having

isolated δA as the most important parameter controlling 〈ueff〉, it is now only

necessary to explain the variation in δA to explain the variation in 〈ueff〉. In the

simple heuristic presented above, cross-isobath density gradients are invoked to

explain the tidal mixing asymmetry, and δA increases as bottom boundary layer

horizontal density gradients increase. This agrees with the results of CB98: the

variation of δA across the bank mirrors the magnitude of the horizontal density

gradients. The cross-isobath density gradient arises from the interaction of tidal

mixing, bottom topography and stratification. Stronger stratification or, as in

CB98, stronger bottom slopes increase cross-isobath density gradients. This

increases δA and the cross-isobath motion of sinking particles where the bottom

is steeply sloped, and explains why there is little particle transport across the

nearly flat crest of the bank.
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Where Else Might Asymetric Mixing be

Important

In regions of sloping bottom topography, strong tidal currents, and strong

stratification, the mechanisms described in the previous sections will conspire to

generate a density gradient in the bottom boundary layer so that the less-dense

water is toward the shallows. When the mean cross-isobath flows are weak and

the cross-isobath tides are strong, asymmetric mixing transport is likely to be

an important mechanism for upslope transport of sinking particles. Such

regions include non-estuarine embayments, mixing dominated estuaries, banks,

and shoals. (In many estuaries, overtides will also be important and the

γM4δAM4 term in Eq. 10 will dominate. The transport driven by the overtides

is known as “settling-lag transport”, is described in e.g. Jay and Musiak [1994],

and can be estimated with Eq. 10.)

In non-tidal-mixing dominated estuaries, the fresh water discharge will tend

to drive strong landward mean flows near the bottom which will usually be more

important than the asymmetric mixing mechanism [Hansen and Rattray, 1965].

Sources of Error in the Estimates of 〈ueff〉
A comparison of the quasi-steady approximation for 〈ueff〉, Eq. 10, to the

on-bank motion of sinking particles in the primitive equation numerical model

of Georges Bank (CB98; figure 11) shows that our simple model gives a

reasonable approximation of particle transports. The error in 〈ueff〉 is generally

less than a factor of two, except for the steepest portions of the bank, on the

northern and southern flanks, where the error can be much greater.

There are two sources of error in the quasi-steady estimation of 〈ueff〉: 1) the

simple models for vertical mixing (Eq. 3) and cross-isobath velocities (Eq. 2)

may not be adequate, or 2) the motion of sinking particles may not be

determined solely by the currents and mixing at a single location but by the
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variation of the currents and mixing experienced by a particle as it moves across

the bank over a tidal cycle.

In order to seperate these two possible sources of error, 〈ueff〉 is recalculated

from equations 4 and 6, but with de-meaned cross-isobath currents and

vertical-mixing coefficients taken from a single location in the numerical model,

resulting in a new estimate, 〈ueff〉CB98 (the mean of the model currents is

removed because it is nearly balanced by a Stokes drift [Chen and Beardsley,

1998]). 〈ueff〉CB98, like the estimate of 〈ueff〉 in Eq. 10, is an Eulerian estimate

because it uses the currents and mixing at one horizontal location, instead of

the currents and mixing experienced by the particles as they move over a full

tidal excursion. Where 〈ueff〉CB98 agrees with the 〈ueff〉 found by tracking

particles in CB98 but disagrees with the estimate of 〈ueff〉 from Eq. 10, the error

must lie in the approximations for the currents and vertical mixing given in

equations (2) and (3). Where both 〈ueff〉CB98 and Eq. (10) fail to predict the

motions of particles in the model of CB98, the errors must come from failing to

include Lagrangian effects, i.e. using the currents and mixing from one location,

instead of using the mixing and currents experienced by the particles as they

sweep back and forth across the bank over a tidal cycle. Because for most of the

bank, 〈ueff〉CB98 agrees well with 〈ueff〉 from equation 10 (figure 13), most of the

error in the estimation of 〈ueff〉 must come from neglecting Lagrangian effects

(the one exception to this occurs where x < 295 km, where the bottom becomes

flat again).

The error is greatest on the steep flanks of the bank, indicating that the

spatial variations in currents and mixing across the bank are important there.

Close examination of the model output shows that the phase of the currents

changes rapidly over the steepest portion of the bank because of the interaction

of the bathymetry with the stratification and the consequent generation of

internal waves (for details, see CB98). Lagrangian motions are most likely to be

important where the path of a particle over a tidal cycle encompasses O(1)

changes in depth. However, even in the regions where the Eulerian model is
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poor, asymmetric mixing and sinking enhances the cross-bank transport of

particles.

Errors in the Primitive Equation Model’s Estimate of

〈ueff〉
In the section above, and in figures 2, 11, and 13, the sinking speeds of the

particles were such that R < 1 everywhere (except for a very small portion of

the south flank). This was done because the model of CB98, and most other

modern numerical models, are incapable of correctly simulating the motions of

particles whose sinking/downward swimming speed is fast enough that they are

concentrated near the bottom, which occurs when R ≈> 1 (figure 8).

Since numerical models are often used to understand larval motions, it is

useful to understand why they can fail to reproduce the motion of sinking

particles, and how these failings can be fixed. The models have two failings, one

minor and one major. The minor failing is the model’s inability to properly

reproduce the resuspension of particles, especially by surface wave-generated

turbulence. This failure is minor because it can be remedied by adding a small

extra diffusivity to the model whose role is exactly analogous to A0 in Eq. 3.

The extra diffusivity could be enabled only when the bottom stress exceeded a

critical resuspension threshold, in cases where that was appropriate [Fredsoe

and Deigaard, 1992].

The more important failing of standard numerical models is their inability to

resolve the bottom log-layer in the one or two gridcells above the bottom. In

order to do so they would have to have impractically fine vertical resolution.

This failure does not affect the velocity dynamics, for the log-layer is a constant

stress layer which can be parameterized with a drag law, as is done in all

modern ocean circulation models. In these models, the horizontal velocity in

the gridcell nearest the bottom is the average velocity for that gridcell: any

particle within the bottom gridcell experiences the same velocity, regardless of

its height above the bottom (see the bottom of figure 5). This is equivalent to
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saying that the particle resuspension height zr is always the vertical resolution

of the model. When R > 1, the particles are concentrated in the bottom-most

part of the the bottom gridcell and advecting them with the average velocity of

the bottom gridcell is problematic. This is exacerbated in the model of CB98

because the vertical resolution varies inversely with the water depth - it is

always one sixtieth of the water depth. Thus particles with R > 1 experience a

zr which is inversely proportional to the water depth, leading to strong but

spurious on-bank motions that are independent of the sinking speed.

In order to use rapidly sinking particles in a ocean circulation model, some

functional form for the mixing and horizontal velocities in the bottom gridcell

would have to assumed (presumable similar to equations 2 and 3), and these

used to interpolate the horizontal velocity and mixing at the bottom gridpoint

to the location of the particle.

Biological Implications

Asymmetric mixing transport provides a mechanism for plankton to

maintain directed motion of up to a few km/d with no expenditure of energy. It

is not clear how such a transport could be verified in the field, but it is possible

that some organisms display the necessary behaviors to exploit it. Most

planktonic organisms larger than about 0.1 mm are more dense than water, and

will tend to sink. In particular, the eggs of many invertebrates and vertebrates

sink with speeds of 10’s to 100’s of meters per day. The eggs of many species of

copepod, for example, will reach the bottom before hatching (e.g., Tang et al.

[1998] and references therein), sinking at .1 - 1 mm s−1. When entrained into

the bottom boundary layer, these eggs could experience significant up-slope

transport. Such a mechanism could be particularly important for

meroplanktonic species in which the planktonic larvae need to recruit to benthic

nearshore habitats. Most benthic marine invertebrates are meroplanktonic, with

the potential for their larvae to be transported up-slope by this asymmetric
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mixing transport mechanism.

Adult scallop populations on Georges Bank are concentrated along the flanks

of the bank, particularly the northeast peak. The scallop beds tend to lie under

the region where the pycnocline intersects the bottom. As the tide moves the

tidal fronts back and forth the scallop beds can be under either stratified or

well-mixed waters. According to the theory presented above, it is in this region

that the up-flank, on-bank transport of sinking plankton would suddenly

decrease due to the loss of the horizontal density gradient which causes the

mixing asymmetry. The asymmetric mixing transport could be a mechanism to

retain scallop larvae on the flanks of the bank, and enhance recruitment to the

adult scallop beds, which appear to be somewhat self-seeding [Trembley, 1991].

But do the scallop larvae have the appropriate behavior?

Manuel et al. [1996] examined the vertical migration patterns of scallop

larvae from three disparate populations, including one from Georges Bank. All

larvae showed a diel vertical migration pattern, with more larvae near the

surface during the night. They found that the Georges Bank larvae had

distinctly different behaviors (apparently genetically determined) than the other

populations, tending to be lower in the water column, and making deeper

excursions during the day after the age of 20 days or so. Veligers ready to settle

were found throughout the water column, rather than concentrated in the

surface waters. However, with a weaker thermocline, all larvae tended to be

distributed throughout the water column, and to settle in greater numbers with

increasing depth. In a mesocosm study examining the effects of thermoclines

and turbulence on scallop larvae, Pearce et al. [1998] showed increasing spat

recruitment with depth in low turbulence intensities, but more random with

depth at higher levels of turbulence. Their observations were consistent with

other studies in which larvae tended to move toward the bottom as they

approached competency [Culliney, 1974; Gallager et al., 1996]. This behavior

would tend to move older larvae on-bank toward the tidal front through

asymmetric mixing transport. Given the strong vertical migration behavior of
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the younger larvae, however, it is unlikely that the younger larvae would exploit

asymmetric tidal mixing to move on-bank.

The distribution of inert sedimentary particles might be expected to follow

the distribution of plankton exploiting the asymmetric mixing transport.

De Wolf [1973] based his hypotheses of larval barnacle behavior on the

correlation between barnacle concentrations and suspended sediments. Figure

10 suggests that on Georges Bank, a sinking velocity of about 1 cm s−1 would

lead to the strongest on-bank transports. Such sinking speeds are more

characteristic of sands than silts and clays. The crest of Georges Bank (the

region within the 60 m isobath) is covered by medium-to-coarse sands and

gravel, while the flanks of the bank show slightly finer sands [Twichell et al.,

1987]. Moving farther off-bank, the sediments become finer silts and clays. Such

a distribution is consistent with a winnowing and off bank transport of the fine

sediments by the strong tidal- and storm-driven currents on the bank, and

possible transport of the sands onto the bank. There are regions along the

northern flank and northeastern peak of Georges Bank where there is an abrupt

transition from sands to coarser gravels beneath the tidal fronts, consistent with

the asymmetric mixing transport mechanism. An important caveat is necessary,

however, when using sediment to understand larval recruitment – sediment

exists for a long time, and so its distribution may be governed by rare but

powerful events, such as winter storms [Twichell et al., 1987]. Larvae, which

must recruit or die in a few short weeks, will be more influenced by continual

processes, such as asymmetric mixing.

While we do not have any evidence that the asymmetric mixing mechanism

is responsible for the location, duration or strength of larval recruitment or

benthic plankton transport, we feel that it is a mechanism worth exploring in

field studies. Quantification of such a transport will be difficult, but may be

possible with the development and deployment of new molecular technologies

for identifying and quantifying organisms. We have proposed measurable

quantities to assess the probable strength of asymmetric mixing transport, and
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discussed the likely sources of error in our simple model. It remains to address

the relative importance of such a mechanism in a variety of field settings.

Conclusion

If sinking or downward-swimming plankton reside in a bottom boundary

layer in which there are no mean flows but strong oscillatory tides, they may

nevertheless be transported across isobaths because of asymmetric vertical

mixing induced by horizontal density gradients in the bottom boundary layer.

The vertical mixing will be stronger when the tides are running from regions of

dense water toward the less dense waters. This lifts sinking particles away from

the bottom into swifter waters and thus causes a mean motion of the particles

toward the less dense water. The horizontal density gradients that generate the

tidal asymmetry in vertical mixing can arise for a variety of reasons; those

generated by the mixing of vertical stratification will tend to generate a density

gradient pointing toward the shallow waters, and thus sinking particles will

tend to move toward the shallow waters.

When the distance a particle travels in half a tidal period does not

encompass order one variations in depth, Eulerian estimates of the cross-isobath

velocities can be made with Eq. 10 and quantities observable in the field. The

velocity is greatest when the downward swimming or sinking speed of the

particles is about a third of the turbulent velocity u∗ or one seventieth of the

tidal current speed. Sinking speeds of 1 cm s−1 can lead to horizontal transports

of up to a few km d−1 given appropriate asymmetries in the strength of the

vertical mixing. For a larvae which can remain viable for several weeks, this

implies potential motions of tens of kilometers towards the shallows. These

directed transports arise with no navigation or effort on the part of the

plankton - they simply sink. Directed cross-isobath transports such as these

could be an important mechanism aiding the recruitment of meroplanktonic

larvae to nearshore adult habitats.
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Fig. 1. Top: the bathymetry of Georges Bank and the surrounding regions. The

thick dark line marks the approximate location of the two-dimensional model of

Chen and Beardsley [1998] (CB98 in the text). Bottom: The temperature at the

beginning of the flood tide in the two-dimensional model. The contour interval

is 0.25·C. The model was run with their typical summertime stratification.

Fig. 2. The mean cross-isobath velocity of particles sinking with speed w0=0,

0.5, and 2 ×10−3m s−1 for the summertime model of CB98. The cross-bank

distances on the abscissa correspond to those in the bottom panel of figure 1.

Positive values are to the right.

Fig. 3. A cartoon of an oscillating tidal flow in a bottom boundary layer with a

horizontal temperature gradient (darker=colder, denser) and sinking particles.

The shape of the isopycnals was taken from the model of CB98 at the point

marked A on the lower panel of Figure 1, but the strength of the tidal mixing

asymmetry was tripled for emphasis.

Fig. 4. The cross-isobath currents and vertical mixing coefficient in the middle

of the bottom boundary layer (23.5 meters above bottom), and the mean height

of particles above the bottom, for the model of CB98 at the point marked A on

the lower panel of Figure 1. The particles sank at a speed of 1 mm s−1.

Fig. 5. The cross-isobath velocity in the bottom boundary layer at point A of

Figure 1 when the velocity near the bottom is at peak flood and ebb for both

the model of CB98 and Eq. 2. The turbulent velocity scale u∗ =0.02 m s−1.

Fig. 6. The tidal cycle mean vertical mixing at point A of Figure 1 from the

model of CB98 and equation Eq. 3. The thickness hbbl = 47 m,

A0 = 10−3 m2 s−1, and u∗ = 0.02 m s−1.
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Fig. 7. The vertical profile of normalized particle concentration for R < 1,

R = 1, and R > 1 from Eq. 5 for ∆ = 1. The sinking speed w0 equals 1.6, 8.2,

and 41 mm s−1, respectively. The thickness hbbl = 40 m, A0 = 2× 10−2 m2 s−1,

and u∗ =0.02 m s−1.

Fig. 8. The mean height of a particle normalized by the boundary layer

thickness hbbl as a function of the Rouse number R. zr/hbbl is 0.025.

Fig. 9. U as a function of R for various values of zr/hbbl.

Fig. 10. Mean cross-isobath velocity 〈ueff〉 as estimated from Eq. (7) for station

A of Figure 1.

Fig. 11. Cross-isobath motion due to sinking for particles sinking at w0=0.5

and 2 ×10−3m s−1 as estimated by Eq. 10 and seen in the model of CB98 for

Georges Bank. To concentrate on the cross-bank motion induced by sinking,

the speed of non-sinking particles in the bottom boundary layer has been

removed from the sinking particles in the model of CB98 (i.e. the top panel of

Figure 2 has been subtracted from the bottom two panels in order to produce

the dashed lines above). The line for the estimate of 〈ueff〉 is thin where

δA > 0.6 and the Taylor series expansion of Eq. 7b is unreliable.

Fig. 12. From top to bottom: R for w0 = 2× 10−3 m s−1 , δA, the horizontal

density gradient in the bottom boundary layer, and the temperature in the

model of CB98 (the contour interval is 0.2◦ C). δA is calculated as the vertical

average over the bottom boundary layer of the ratio of the M2 component of

vertical mixing to the time mean vertical mixing, and thus can be greater than

one where the vertical mixing is only strong for a brief portion of the tidal cycle.
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Fig. 13. The mean motion of particles in the model of CB98, 〈ueff〉 from Eq. 10

and 〈ueff〉CB98 for particles sinking at 0.5× 10−3 m s−1.
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