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Abstract16

Our previous studies discuss when populations and gradients in allele fre-17

quency can persist in the presence of a mean downstream dispersal of propag-18

ules from the parents’ location. These studies assume that reproduction is19

uniform over the lifetime of the adult, and that the larval dispersal kernel20

is “nearly” Gaussian in shape. These results are extended below to include21

variable reproduction over the lifetime of an adult and non-Gaussian dispersal22

kernels. It is found that persistence is governed by the lifetime reproductive23

output of the adults. The impact of non-Gaussian dispersal kernels is quan-24

tified in terms of the excess kurtosis of the dispersal kernel.25

26

Keywords: Advection, Retention, Planktonic Larvae, Coastal, Physical-27

Biological coupling, Dispersal28

Introduction29

Byers & Pringle (2006) and Pringle & Wares (2007) (hereafter BWP) discuss when30

populations and gradients in allele frequency can be retained in the presence of31

a mean downstream dispersal of propagules from the parents’ location, as occurs,32

for example, in benthic species in the coastal ocean. However, in their analysis33

they make a number of assumptions which they do not fully justify. In particular,34

they assert that it is the lifetime fecundity of the species in the absence of density35

dependence that governs the persistence of the species and alleles; however, they36

only test this result for the case in which reproductive output is constant with time37

over the lifetime of the organism. This is clearly not always a good assumption;38

many invertebrate marine species produce more larvae as the adults grow older and39

larger (Llodra, 2002). They also assume a Gaussian dispersal kernel, and assure40

the reader that any kernel that is “close to a Gaussian” will lead to similar results41

to those obtained with a Gaussian kernel. Unfortunately, they do not define what42

“close” means, thus leaving the reader uncertain as to how to apply the results to43

real world dispersal kernels. Thus the reader is unsure what to do when, to use44

an example from Byers & Pringle (2006), a species reproduces in multiple seasons45

in which the mean and variability of the currents are different, so that even if the46
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dispersal kernel for each reproductive event is Gaussian, the net larval dispersal47

kernel is a composite of the distribution for each spawning event and will not be48

Gaussian.49

In the following section, we will provide two results that address these issues.50

First, we will show that the criteria for retention of a species is, for a Gaussian51

dispersal kernel,52

L2
adv

2L2
diff

< ln(N), (1)

where N is the total number of larvae which would recruit and reach reproductive53

competency in the absence of density dependent effects per adult per lifetime. Ladv54

and Ldiff are the mean and standard deviation of the larval dispersal distance, as55

discussed in BWP. This is the same as equation (6) of Byers & Pringle (2006) when56

the reproductive output of the adults is constant with age, but is also correct when57

the reproductive output of the adult varies with age. Second, we show that if the58

kernel is non-Gaussian, the criteria for retention becomes approximately59

L2
adv

2L2
diff

< ln(N) +
γ2

6
ln(N)2 +

γ2
2

144
ln(N)3, (2)

where γ2 is the “excess kurtosis”, and is equal to µ4/L
4
diff −3, where µ4 is the fourth60

central moment of the kernel. The kurtosis is a measure of how many of the larvae61

of a given kernel are in the edges of the dispersal kernel relative to the center of62

the kernel for a given standard deviation of larval dispersal distance, Ldiff . This63

can be seen in the two panels of figure 1, where the kernels with larger and more64

positive kurtosis have more larvae in their tails and, in order to keep the standard65

deviation constant, more larvae concentrated at the center of the distribution. Ex-66

cess kurtosis is defined with respect to a Gaussian distribution, so that a positive67

excess kurtosis indicates more larvae in the tails of the distribution than a Gaussian68

kernel would have, and a negative value indicates fewer. Thus a Gaussian kernel69

has an excess kurtosis γ2 of zero, and the above criteria reduces to that of BWP for70

that kernel. The excess kurtosis for other kernels can be found in Lutscher (2007).71

This criteria for retention can be used to judge how important the deviations from72

a Gaussian kernel are, and, if the effect is large, numerical methods can then be73
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used to calculate the exact retention criterion (the code to do so is available in the74

online supplement to this article). This result can be transferred to Pringle & Wares75

(2007) by substituting the righthandside of (2) for the righthandside of equations76

(3), (4) and (10) in that paper. It is also shown below that when there is no mean77

downstream dispersal of larvae, the excess kurtosis does not affect the persistence78

of a species, consistent with Lockwood et al. (2002).79

The impact of non-Gaussian kernels, such as those shown in figure 1, can be80

very important when there is a mean downstream transport of larvae. In figure81

2, the critical value of N needed to allow retention is shown as a function of the82

mean larval dispersal distance Ladv for these three non-Gaussian dispersal kernels,83

each representative of a certain kind of deviation from an idealized Gaussian kernel.84

For each kernel, the standard deviation of the dispersal distance of successfully85

recruiting larvae Ldiff is 30km while the mean dispersal distance varies from 1 to86

50km. The first kernel is the composite of two Gaussian kernels, such as might87

occur if the species spawns in two different seasons with different mean currents.88

This has a negative γ2 of -1.89, indicating that the tails of the dispersal kernel are89

relatively small for a given value of Ldiff . Thus fewer larvae settle far from the center90

of the larval recruitment distribution, increasing the N needed to allow retention91

above the prediction of (1) for a given Ladv and Ldiff . The second kernel is tent92

shaped and there is no dispersal outside of a finite distance. Its excess kurtosis is93

γ2=-0.6. This models the truncation of the tails of the dispersal kernel which can94

occur because there is a practical upper limit on the speed of the currents in the95

ocean, and thus a limit to the dispersal distance of a larvae. This tends to increase96

the N needed to allow retention relative to the Gaussian prediction by eliminating97

the rare long-distance dispersal of larvae. The third set of results are for a Gaussian98

kernel, for which γ2 = 0 and the results of BWP and (2) agree. The last kernel is a99

Laplacian kernel, with γ2 = 3.0. With this kernel, the density of larval recruitment100

is increased both near the center of the larval distribution and far from the center,101

leading to a sharply peaked distribution with long tails of dispersal distance. These102

tails tend to increase the ability of larvae to be retained for a given fecundity and103

recruitment rate N relative to an equivalent Gaussian kernel.104

For each non-Gaussian kernel, the approximation in (2) is more accurate than105
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the criteria in BWP calculated under the assumption of a Gaussian kernel. It106

successfully captures the increase in N needed for retention when γ2 < 0, and the107

decrease when γ2 > 0. Further discussion of the dynamics behind these results is108

given in the context of invasion speeds in Lutscher (2007). When the magnitude of109

the excess kurtosis of the dispersal kernel or Ladv becomes large, the approximate110

formula (2) becomes increasingly inaccurate. In practice, it would be prudent to use111

(2) to estimate the effect of the excess kurtosis on the critical value of N needed to112

allow retention and, if this effect is large, then to calculate the exact critical value113

of N numerically using the code in the online supplement.114

The following sections lay out the derivations of these results, but present no115

further results.116

Retention and Reproduction117

Neubert & Caswell (2000) derive a method for determining the invasion speed of118

a population in a stage structured population given any dispersal kernel with ex-119

ponentially bounded tails. They argue that it is not necessary to include density120

dependent effects in this calculation, as long as there are no Allee or long-distance121

density dependence effects. We assume discrete generations of an organism that122

only disperses when spawned, and is afterwards sessile, as in BWP. Following Neu-123

bert & Caswell (2000), and assuming that the dispersal kernel K is independent of124

the parents location and includes the mean transport of the larvae, the population125

at location x and time t + 1 in generations, p(x, t + 1), is given by the convolution126

p(x, t + 1) =

∫

∞

−∞

dy (A(x − y)p(y, t)) . (3)

Here, p(x, t) is a vector whose elements are the population age structure, y is a127

dummy variable of integration, and A is the matrix that describes how the larval128

settlement is distributed in space and how each generation ages (the combined K◦B129
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of Neubert & Caswell (2000)):130

A =

















N1K N2K . . . NnK

δr1 0 . . . 0

0 δr2 . . . 0
...

. . .
...

0 0 . . . 0

















. (4)

Subscripts indicate the age in generations, ri is the likelihood that an individual of131

age i will live to i + 1, Ni is the fecundity of an adult of age i, n is total number132

of generations an organism can live, δ is the Dirac delta function, indicating that133

adults are sessile, and both K and δ are functions of (x−y). (In BWP, Ni is uniform134

for each generation, and is called Nfec.) Neubert & Caswell (2000) show that the135

invasion speed can be found from the matrix formed by computing the moment136

generating function of each element of A, which is calculated by multiplying each137

element by esx, and integrating from −∞ to ∞. This results in138

B =

















N1M(s) N2M(s) . . . NnM(s)

r1 0 . . . 0

0 r2 . . . 0
...

. . .
...

0 0 . . . 0

















(5)

where M(s) is the moment generating function of the dispersal kernel K.139

If the mean dispersal is towards smaller x, the upstream dispersal speed is given140

by the minimum141

c = min
s>0

{

1

s
ln (ρ(s))

}

(6)

as a function of s, where ρ(s) is the largest eigenvalue of B (Neubert & Caswell,142

2000). Now, at the critical value of population growth that just allows a population143

to be retained, the upstream invasion speed must be zero. If the invasion speed is144

negative, the population is being washed downstream, and if it is greater than zero,145

the population has more than enough growth to persist (BWP). Thus, at the critical146

6



growth rate for retention, ρ(s) must be 1. The largest eigenvalue of the matrix B is147

given by largest root of the characteristic polynomial (Strang, 1988)148

ρn − N1M(s)ρn−1 − r1N2M(s)ρn−2 − r1r2N3M(s)ρn−3

· · · − (r1r2 . . . rn−1)NnM(s) = 0. (7)

Setting ρ = 1, and assuming that K and thus M(s) does not vary with the age of149

the parents, the critical condition of c = 0 becomes150

n
∑

j=1

{(

j−1
∏

l=1

rl

)

Nj

}

M(s) = 1. (8)

The sum of the products above is just the likelihood that an adult reaches age151

j,
∏j−1

l=1 rl, multiplied by the reproductive success for that age, Nj, i.e., it is just152

the expected total reproduction of an individual N , neglecting density dependence153

effects. Thus the minimum total lifetime reproduction needed for retention is given154

when condition (8) is satisfied for the smallest value of M(s), i.e.,155

N min
s>0

M(s) = 1. (9)

This condition depends only on the dispersal kernel (which sets M(s)) and N ,156

regardless of how the fecundity of the organism varies with age. Thus retention157

is governed by the expected total number of larvae which would settle and reach158

reproductive competency in the absence of density dependent effects over the lifetime159

of an adult, N , and the dispersal kernel. For the Gaussian kernel with mean dispersal160

distance Ladv, the moment generating function is given by161

M(s) = exp(Ladvs + L2
diffs2/2). (10)

Solving (9) with (10), we obtain (1) for species with Gaussian dispersal kernels. We162

can recover the results of Byers & Pringle (2006) by noting that their Nfec is Ni163

above and is the same for each generation, their Ngen is n, and they assume ri = 1.164

In these limits, NfecNgen = N , and so their criteria for retention in iteroparous165

species reduces to (1).166
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Non-Gaussian kernels167

For any arbitrary kernel, the critical value of N or Ladv needed to allow retention168

can be found from (9). However, while straightforward to do so computationally, it169

is difficult to make analytical headway in this manner. Instead, we take advantage170

of two results. First, Pachepsky et al. (2005) note that the criterion for retention of a171

species with a mean larval dispersal distance per generation (Ladv 6= 0) can be found172

by computing the upstream invasion distance per generation that would result from173

its dispersal kernel in the absence of a mean downstream dispersal (Ladv = 0). If174

this invasion speed exceeds the mean dispersal distance per generation, the species175

can be retained. Secondly, Lutscher (2007) computes an approximate invasion speed176

for an arbitrary dispersal kernel which has no mean downstream dispersal. When177

Lutscher (2007)’s invasion speed in distance per generation exceeds the Ladv, the178

population will persist.179

Following Weinberger (1982), we note that the invasion speed for an semelparous180

organism with Ladv = 0 is given by181

c = min
s>0

1

s
ln (NM(s)) (11)

where M(s) is the moment generation function of the kernel discussed above. (This182

is just (6) written for the semelparous case. As shown in the last section, the183

semelparous results will also be applicable to the iteroparous case.) M(s) can be184

expanded in the raw moments of the dispersal kernel M(s) = 1+
∑

i=1...∞
si

i!
µ′

i. Since185

the mean downstream transport of the larvae in this calculation is zero, the first raw186

moment is zero, and we shall assume that the dispersal kernel is not skewed, so that187

the third raw moment is zero. Keeping the expansion to O(s4) in s of M(s), making188

a Taylor series expansion of ln (NM(s)) in (11) to the same order, and finding the189

minimum of this expansion, leads to an estimate of the upstream invasion speed in190

units of distance per generation of191

c∗ =
√

2L2
diff ln N

(

1 +
γ2

12
ln N

)

(12)

where γ2 is the excess kurtosis as defined in the introduction. When c∗ is greater192

than Ladv, the species can persist. Solving for this criterion leads to the expression193

given in (2).194
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Equation (2) provides an estimate of how the excess kurtosis of a dispersal kernel195

can alter the estimates of the population growth rate needed to allow a population196

to persist. However, if one is using dispersal kernels derived either from observation197

or numerical model, one is likely to find the kernel has non-negligible skew (the third198

central moment of the dispersal kernel), and may have higher moments that further199

modify the persistence criterion away from (2). However, it is straightforward to200

compute the persistence criteria numerically, and in the supplemental online mate-201

rial for this article there is a Python program to compute the persistence criteria202

for an arbitrary dispersal kernel. This code directly solves (11) for c = 0 for a user203

defined dispersal kernel.204

Excess kurtosis only affects population persistence when there is a mean down-205

stream dispersal of larvae (e.g. Ladv=0), as has been pointed out by, among others,206

Lockwood et al. (2002). These results are consistent with (2), for when Ladv=0, the207

criterion for persistence becomes ln(N) > 0 or, equivalently, N > 1. When ln(N)208

approaches 0, the terms involving the excess kurtosis in (2) approach zero, and thus209

no longer affect the criterion.210
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Figure 1: Top) The four larval dispersal kernels examined in figure 2. For each, the

standard deviation of the distance the larvae disperse, Ldiff , is 30km, while the mean

distance Ladv is 0 in these plots (though not in figure 2). Bottom) The righthand

tails of the same kernels, expanded from the shaded portion of the top plot. The

double Gaussian kernel’s tail is too close to zero to be seen on this scale.
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Figure 2: The critical value of N needed to allow the retention of a population as

a function of the mean distance the larvae disperse, Ladv, for the various dispersal

kernels shown in figure 1. Shown is the true value, computed numerically as de-

scribed in the text, the estimate which includes the effect of the excess kurtosis of

the dispersal kernel from equation (2), and the estimate assuming a Gaussian kernel

from BWP. The plots are ordered from least excess kurtosis, the Double Gaussian

kernel with γ2 = −1.89, to the greatest excess kurtosis, the Laplacian kernel with

γ2 = 3.0.
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